Trắc nghiệm Toán 10 Chương 7: Phương pháp tọa độ trong mặt phẳng
Câu 1. Trong hệ tọa độ Oxy cho tam giác ABC có A (6 ; 1), B (–3 ; 5) và trọng tâm G (–1 ;1). Tìm tọa độ đỉnh C?
A. C (6 ; – 3) ;
B. C (– 6 ; 3) ;
C. C (– 6 ; – 3) ;
D. C (– 3 ; 6).
Hướng dẫn giải
Đáp án đúng là : C
Gọi toạ độ C(x ; y), ta có:
Vì G là trọng tâm tam giác ABC nên :
hay C (–6; –3).
Câu 2. Khoảng cách từ giao điểm của đường thẳng x – 3y + 4 = 0 và 2x + 3y – 1 = 0 đến đường thẳng : 3x + y + 3 = 0 bằng:
A. ;
B.;
C. ;
D. 2.
Hướng dẫn giải
Đáp án đúng là: C
+) Giao điểm của hai đường thẳng:
Ta có: , vậy điểm A (–1; 1) là giao điểm của hai đường thẳng
+) Khoảng cách từ A đến : 3x + y + 3 = 0:
Câu 3.Góc tạo bởi hai đường thẳng nào dưới đây bằng 90°
A. : 6x – 5y + 4 = 0 và
B.
C. d1: x – 2y + 4 = 0 và d2: y + 1 = 0;
D. và d2: 3x + 2y – 4 = 0.
Hướng dẫn giải
Đáp án đúng là: A
+) Đường thẳng : 6x – 5y + 4 = 0 có VTPT là
Đường thẳng có VTCP là nên VTCP là
Ta có: . Do đó d1 ⊥ d2 hay góc giữa hai đường thẳng bằng 90°.
+) Đường thẳng có VTCP là
Đường thẳng có VTCP là
Ta có: nên và cùng phương. Do đó hai đường thẳng d1 song song hoặc trùng d2. Do đó góc giữa hai đường thẳng bằng 0°.
+) Đường thẳng d1: x – 2y + 4 = 0 có VTPT là
Đường thẳng d2: y + 1 = 0 có VTPT là
Áp dụng công thức tính góc giữa hai đường thẳng ta được:
⇒ (d1 ; d2) ≈ 26°34’.
+) Đường thẳng có VTCP là nên VTCP là
Đường thẳng d2: 3x + 2y – 4 = 0 có VTPT là
Áp dụng công thức tính góc giữa hai đường thẳng ta được:
⇒ (d1 ; d2) ≈ 22°37’.
Câu 4. Trong hệ tọa độ Oxy cho ba điểm A(3; 5), B(1; 2), C(5; 2) và D(m ; n) . Tính m + n để ACDB là hình bình hành.
A. m + n = 3;
B. m + n = – 1;
C. m + n = 2;
D. m + n = 4.
Hướng dẫn giải
Đáp án đúng là: C
Ta có: ; .
Để ACDB là hình bình hành thì =
⇒ m + n = 3 + (– 1) = 2.
Câu 5. Trong hệ tọa độ Oxy cho tam giác ABC có A (– 2 + x ; 2), B (3 ; 5 + 2y), C(x ; 3 – y). Tìm tổng 2x + y với x, y để O (0 ; 0) là trọng tâm tam giác ABC?
A. – 7;
B. – 2 ;
C. – 11;
D. .
Hướng dẫn giải
Đáp án đúng là : C
Vì O là trọng tâm tam giác ABC nên, ta có :
.
Câu 6. Cho = (–2m; 2), = (2; –7n). Tìm giá trị của m và n để tọa độ của vectơ = (6; –5).
A. m = 4 và n = – 1;
B. m = – 4 và n = – 1;
C. m = 4 và n = 1;
D. m = – 4 và n = 1.
Hướng dẫn giải
Đáp án đúng là : B
Ta có : = (–2m; 2) – (2; –7n) = (–2m –2; 2 + 7n)
Mà = (6; – 5)
Nên ta có:
Vậy m = – 4 và n = – 1.
Câu 7. Cho A (2; –4), B (–5; 3). Tìm tọa độ của .
A. (7; –7);
B. (–7; 7);
C. (9; –5);
D. (1; –5).
Hướng dẫn giải
Đáp án đúng là: B
Ta có : = (–5 – 2; 3 – (–4)) = (–7; 7).
Câu 8. Trong hệ tọa độ Oxy cho tam giác ABC có B (9 ; 7), C (11 ; –1). Gọi M, N lần lượt là trung điểm của AB, AC. Tìm tọa độ vectơ ?
A. (2 ; – 8) ;
B. (1 ; – 4) ;
C. (10 ; 6) ;
D. (5 ; 3).
Hướng dẫn giải
Đáp án đúng là : B
Xét tam giác ABC, có :
M là trung điểm AB
N là trung điểm AC
Suy ra MN là đường trung bình tam giác ABC
Theo tính chất đường trung bình,ta có :
= .(2; –8) = (1; –4).
Câu 9. Trong hệ tọa độ Oxy cho = (5 ; 2), = (10 ; 8). Tìm tọa độ của vectơ .
A. (15; – 10);
B. (2; 4);
C. (– 5; – 10);
D. (50; 16).
Hướng dẫn giải
Đáp án đúng là: C
Ta có: 3= 3(5 ; 2) = (15 ; 6) ; 2 = 2(10 ; 8) = (20 ; 16)
= (15 – 20 ; 6 – 16) = (– 5; – 10).
Câu 10. Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(– 3; 2) và B(1; 4).
A. (1; 3);
B. (2; 1);
C. (1; 3);
D. (3; 1).
Hướng dẫn giải
Đáp án đúng là: B
Đường thẳng đi qua hai điểm A(– 3; 2) và B(1; 4) có VTCP là:
= (4; 2) = 2(2; 1)hay .
Câu 11. Trong hệ tọa độ Oxy cho ba điểm A (1; 3) ; B (– 1; 2) ; C (– 2 ; 1) . Tìm tọa độ của vectơ .
A. (– 5; – 3);
B. (1; 1);
C. (– 1; 2);
D. (– 1; 1).
Hướng dẫn giải
Đáp án đúng là : B
Ta có = (– 2 – (– 3); – 1 – (– 2)) = (1; 1).
Câu 12. Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng đi qua hai điểm A(a; 0) và B(0; b)?
A. (a; – b);
B. (a; b);
C. (– b; a);
D. (b; a).
Hướng dẫn giải
Đáp án đúng là: A
Ta có:
đường thẳng AB có VTCP hoặc
đường thẳng AB có VTPT là .
Câu 13. Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4);B(1; 5) và C(3; 1). Tính diện tích tam giác ABC.
A. 10;
B. 5;
C.
D.
Hướng dẫn giải
Đáp án đúng là: B
+) Viết phương trình đường thẳng BC; độ dài BC
– Ta có: B(1; 5); C(3; 1) ⇒ (2; – 4) là vectơ chỉ phương của đường thẳng BC
Ta chọn = (2; 1) là vectơ pháp tuyến của đường thẳng BC (), ta viết được phương trình đường thẳng qua BC như sau: 2.(x – 1) + 1.(y – 5) = 0 hay
2x + y – 7 = 0
– Độ dài BC: BC =
+) Tính độ dài đường cao kẻ từ A:
Độ dài đường cao kẻ từ A chính là khoảng cách từ A đến phương trình đường thẳng qua BC, ta có:
+) Diện tích tam giác ABC:
= = 5.
Câu 14. Tọa độ tâm I và bán kính R của đường tròn (C): x2 + y2 = 16 là:
A. I (0; 0), R = 9;
B. I (0; 0), R = 81;
C. I (1; 1), R = 3;
D. I (0; 0), R = 4;
Hướng dẫn giải
Đáp án đúng là: D
Ta có:(C): x2 + y2 = 16
I (0; 0); R = = 4.
Câu 15.Cho đường thẳng Đường thẳng nào sau đây trùng với đường thẳng d.
Hướng dẫn giải
Đáp án đúng là: A
Đường thẳng có VTCP là = (4; – 4) = 4.(1; – 1). Suy ra VTCP của đường thẳng d cũng là vectơ có tọa độ (1; – 1).
Với t = 1 thì . Do đó đường thẳng d đi qua điểm có tọa độ (1; – 2).
Vì vậy đường thẳng d trùng với đường thẳng
Câu 16. Trong hệ tọa độ Oxy cho ba điểm A (–1 ; 1), B (1 ; 3), C (–1; 4) , D(1; 0). Khẳng định nào sau đây đúng?
A.
B.
C.
D.
Hướng dẫn giải
Đáp án đúng là: C
Ta có : nhận thấy
= -2. (-1; -1) = .
Câu 17.Phương trình đường thẳng cắt hai trục tọa độ tại A(– 2 ; 0) và B(0 ; 4) là:
A. 2x – 3y + 2 = 0;
B. 4x – 2y + 8 = 0;
C. 3x – 3y – 6 = 0;
D. 2x – 3y – 5 = 0.
Hướng dẫn giải
Đáp án đúng là : B
Ta có:
Phương trình đường thẳng:4x – 2y + 8 = 0
Câu 18. Khoảng cách từ điểm M( –1; 1) đến đường thẳng : 3x – 4y – 3 = 0 bằng:
A.
B. 2;
C.
D.
Hướng dẫn giải
Đáp án đúng là: B
Áp dụng công thức tính khoảng cách từ một điểm đến đường thẳng ta có:
Câu 19. Cho hai vectơ và . Tìm các số thực a và b sao cho cặp vectơ đã cho bằng nhau:
A. a = 2, b = – 1;
B. a = – 1, b = 2;
C. a = – 1, b = – 2;
D. a = 2, b = 1.
Hướng dẫn giải
Đáp án đúng là: A
Để
Vậy a = 2 và b = – 1.
Câu 20. Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?
A. (– a; – b);
B. (a; b);
C. (1; a);
D.(1; b).
Hướng dẫn giải
Đáp án đúng là: B
Ta có:
đường thẳng OM có VTCP:
Câu 21. Một đường thẳng có bao nhiêu vectơ chỉ phương?
A. 2;
B. 5;
C. 7;
D. Vô số.
Hướng dẫn giải
Đáp án đúng là: D
Một đường thẳng có vô số vectơ chỉ phương
Câu 22. Viết phương trình tham số của đường thẳng d đi qua điểm M(6; –10)và vuông góc với trục Oy?
Hướng dẫn giải
Đáp ứng đúng là: B
Ta có: , mặt khác
Phương trình tham số , với t = – 4 ta được
hay A (2; – 10) d
Câu 23. Xét vị trí tương đối của hai đường thẳng:
: 3x – 2y – 3 = 0 và : 6x – 2y – 8 = 0
A. Trùng nhau;
B. Song song;
C. Vuông góc với nhau;
D. Cắt nhau nhưng không vuông góc nhau.
Hướng dẫn giải
Đáp án đúng là: D
Ta có: : 3x – 2y – 3 = 0 có VTPT là = (3; – 2) và : 6x – 2y – 8 = 0 có VTPT là = (6; – 2).
Ta có: nên hai vectơ và không cùng phương.
Do đó đường thẳng d1 và d2 cắt nhau.
Ta lại có nên d1 và d2 không vuông góc với nhau.
Vậy hai đường thẳng cắt nhau nhưng không vuông góc.
Câu 24. Đường tròn (C): x2 + y2 – 8x + 2y + 6 = 0 có tâm I, bán kính R lần lượt là:
A. I (3; – 1), R = 4;
B. I (– 3; 1), R = 4;
C. I (4; – 1), R = ;
D. I (– 3; 1), R = 2.
Hướng dẫn giải
Đáp án đúng là: C
Ta có:(C): x2 + y2 – 8x + 2y + 6 = 0⇔ x2 + y2 – 2.4x – 2.(– 1)y + 6 = 0
⇒a = 4; b = – 1 và c = 6
⇒I (4; – 1), .
Câu 25. Đường tròn (C)đi qua ba điểm A (– 1; – 2), B(0; 1) và C(1; 2) có phương trình là:
A. (x – 4)2 + (y – 2)2 = 52;
B. (x – 4)2 + (y + 2)2 = 52;
C. (x + 4)2 + (y + 2)2 = 52;
D. (x + 4)2 + (y – 2)2 = 52.
Hướng dẫn giải
Đáp án đúng là: B
Gọi phương trình đường tròn cần tím có dạng (C): x2 + y2 + 2ax + 2by + c = 0.
Vì (C) đi qua các điểm A, B, C nên lần lượt thay tọa độ các điểm vào phương trình (C) ta được hệ phương trình:
Vậy phương trình đường tròn (C) là x2 + y2 – 8x + 4y – 5 = 0 ⇔ (x – 4)2 + (y + 2)2 = 52.
Câu 26. Phương trình tiếp tuyến d của đường tròn (C): x2 + y2 – 3x – y = 0 tại điểm N(1; – 1) là:
A. d: x + 3y – 2 = 0;
B. d: x – 3y + 4 = 0;
C. d: x – 3y – 4 = 0;
D. d: x + 3y + 2 = 0.
Hướng dẫn giải
Đáp án đúng là: D
Xét phương trình (C): x2 + y2 – 3x – y = 0 ⇔ .
Khi đó đường tròn (C) có tâm nên tiếp tuyến tại N có VTPT là:
Nên có phương trình là: 1(x – 1) +3(y + 1) = 0x + 3y + 2 = 0.
Câu 27. Viết phương trình tiếp tuyến của đường tròn ,
biết tiếp tuyến vuông góc đường thẳng d: 3x – 4y – 2018 = 0.
A. 3x – 4y + 39 = 0 hoặc 3x – 4y – 11 = 0;
B. 4x + 3y + 39 = 0 hoặc 3x – 4y – 11 = 0;
C. 3x – 4y + 39 = 0 hoặc 4x + 3y – 11 = 0;
D. 4x + 3y + 39 = 0 hoặc 4x + 3y – 11 = 0.
Hướng dẫn giải
Đáp án đúng là: D
Xét phương trình đường thẳng d có VTPT là (3; – 4) suy ra VTCP của đường thẳng d là (4; 3).
Vì phương trình tiếp tuyến vuông góc với đường thẳng d nên nhận (4; 3) làm VTPT khi đó phương trình tiếp tuyến có dạng: 4x + 3y + c = 0
Ta có: Đường tròn (C) có tâm I(– 2; – 2), R = 5
Bán kính đường tròn:
Suy ra có hai phương trình tiếp tuyến thỏa mãn: 4x + 3y + 39 = 0 hoặc :4x + 3y –11 = 0.
Câu 28. Elip có độ dài trục bé bằng:
A. 2;
B. 4;
C. 1;
D.
Hướng dẫn giải
Đáp án đúng là: D
Phương trình của Elip là có độ dài trục lớn B1B2 = 2b.
Xét
Câu 29.Đường thẳng nào là đường chuẩn của parabol
A.
B.
C.
D. .
Hướng dẫn giải
Đáp án đúng là: D
Phương trình chính tắc của parabol
2p = 2 p =1. Phương trình đường chuẩn là =.
Câu 30. Elip có tiêu cự bằng:
A.
B. 5,
C. 10,
D. 2.
Hướng dẫn giải
Đáp án đúng là: D
Gọi phương trình của Elip là có tiêu cự là 2c
Xét
= 16 – 4 = 12c = 2c = 2.
Xem thêm các bài trắc nghiệm Toán 10 Cánh diều hay, chi tiết khác:
Trắc nghiệm Toán 10 Bài 3: Phương trình đường thẳng
Trắc nghiệm Toán 10 Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng
Trắc nghiệm Toán 10 Bài 5: Phương trình đường tròn
Trắc nghiệm Toán 10 Bài 6: Ba đường conic
Trắc nghiệm Ôn tập chương 7