Trắc nghiệm Toán 10 Bài 4: Xác suất của biến cố trong một số trò chơi đơn giản
Câu 1. Gieo đồng tiền hai lần. Xác xuất để sau hai lần gieo thì kết quả của 2 lần tung là khác nhau
A. ;
B. ;
C. ;
D. .
Hướng dẫn giải
Đáp án đúng là: B
Ta có: Ω = {SS; SN; NS; NN} ⇒n (Ω) = 4
Gọi B là biến cố kết quả của hai lần tung đồng xu là khác nhau : B= { SN; NS}
⇒n (B) = 2
Vậy xác suất của biến cố B là : =
Câu 2. Gieo một con xúc xắc. Xác suất để số chấm xuất hiện là số chẵn là:
A. 0,2;
B. 0,3;
C. 0,4;
D. 0,5.
Hướng dẫn giải
Đáp án đúng là: D
Ta có: Ω = {1; 2; 3; 4; 5; 6} ⇒n (Ω) = 6
Gọi C là biến cố số chấm xuất hiện là số chẵn: C= { 2; 4; 6}
⇒n (C) = 3
Vậy xác suất của biến cố C là : = = 0,5.
Câu 3. Gieo ngẫu nhiên hai con xúc xắc cân đối và đồng chất. Xác suất để sau hai lần gieo được số chấm giống nhau.
A. ;
B. ;
C. ;
D. 1.
Hướng dẫn giải
Đáp án đúng là: B
Ta có: n (Ω) = 6.6 = 36
Gọi D là biến cố sau hai lần gieo được số chấm giống nhau.
⇒ D = {(1; 1), (2; 2), (3; 3), (4; 4), (5; 5), (6; 6)}
⇒n (D) = 6
Vậy xác suất của biến cố D là : = =.
Câu 4. Gieo hai con xúc xắc đồng chất. Xác suất để tổng số chấm xuất hiện trên mặt của 2 con xúc xắc không vượt quá 5 là:
A. ;
B. ;
C. ;
D..
Hướng dẫn giải
Đáp án đúng là: D
Ta có: n (Ω) = 6.6 = 36
Gọi E là biến cố tổng số chấm xuất hiện trên mặt của 2 con xúc xắc không vượt quá 5.
⇒E = {(1; 1), (1; 2), (1; 3), (1; 4), (2; 1), (2; 2), (2; 3), (3; 1), (3; 2), (4; 1)}
⇒n (E) = 10
Vậy xác suất của biến cố E là : = = .
Câu 5. Gọi G là biến cố tổng số chấm bằng 7 khi gieo hai con xúc xắc. Số phần tử của G là:
A. 4;
B. 5;
C. 6;
D. 7.
Hướng dẫn giải
Đáp án đúng là: C
Ta có: G = {(1;6), (6; 1), (3; 4), (4; 3), (2; 5), (5; 2)}
Do đó, n(G) = 6
Câu 6. Viết tập hợp Ω là không gian mẫu trong trò chơi tung đồng xu hai lần liên tiếp.
A. Ω = {SS; SN; NS; NN};
B. Ω = {SS; SN; NS };
C. Ω = {SS; NS; NN};
D. Ω = {SS; SN; NN}.
Hướng dẫn giải
Đáp án đúng là: A
Thực hiện tung đồng xu 2 lần có các trường hợp có thể xảy ra là:
TH1: lần 1 đồng xu xuất hiện mặt sấp, lần 2 xuất hiện mặt sấp
TH2: lần 1 đồng xu xuất hiện mặt sấp, lần 2 xuất hiện mặt ngửa
TH3: lần 1 đồng xu xuất hiện mặt ngửa, lần 2 xuất hiện mặt sấp
TH4: lần 1 đồng xu xuất hiện mặt ngửa, lần 2 xuất hiện mặt ngửa
Vậy tập hợp Ω các kêt quả có thể xảy ra là: Ω = {SS; SN; NS; NN}.
Câu 7. Xác định số phần tử của không gian mẫu các kết quả có thể xảy ra đối với mặt xuất hiện của một xúc xắc sau 3 lần gieo
A. 36;
B. 216;
C. 18;
D. 108.
Hướng dẫn giải
Đáp án đúng là: B
Ta xem việc thực hiện gieo xúc xắc 3 lần là một công việc gồm 3 giai đoạn:
Giai đoạn 1 : Gieo xúc xắc lần 1: có 6 kết quả có thể xảy ra.
Giai đoạn 2 : Gieo xúc xắc lần 3: có 6 kết quả có thể xảy ra.
Giai đoạn 3 : Gieo xúc xắc lần 3: có 6 kết quả có thể xảy ra.
Do đó, khi thực hiện gieo xúc xắc 3 lần thì có 6.6.6 = 216 có thể xảy ra
Vậy không gian mẫu có 216 phần tử
Câu 8. Gieo một xúc xắc 2 lần . Biến cố A là biến cố để sau hai lần gieo có ít nhất 1 mặt 6 chấm
A. A = {(1; 6), (2; 6), (3; 6), (4; 6), (5; 6)};
B. A = {(1; 6), (2; 6), (3; 6), (4; 6), (5; 6), (6; 6)};
C. A = {(1; 6), (2; 6), (3; 6), (4; 6), (5; 6), (6; 6), (6; 1), (6; 2), (6; 3), (6; 4), (6; 5)};
D. A = {(6; 1), (6; 2), (6; 3), (6; 4), (6; 5)}.
Hướng dẫn giải
Đáp án đúng là: C
Biến cố A là biến cố để sau hai lần gieo có ít nhất 1 mặt 6 chấm có 3 trường hợp xảy ra:
Trường hợp 1: lần 1 xuất hiện mặt 6 chấm và lần 2 xuất hiện những mặt còn lại(từ 1 đến 5)
Trường hợp 2 : lần 1 xuất hiện những mặt có số chấm từ 1 đến 5 và lần 2 xuất hiện mặt 6 chấm
Trường hợp 3: 2 lần đều xuất hiện mặt 6 chấm.
Do đó, ta có: A = {(1; 6), (2; 6), (3; 6), (4; 6), (5; 6), (6; 6), (6; 1), (6; 2), (6; 3), (6; 4), (6; 5)}
Câu 9. Gieo xúc xắc 2 lần liên tiếp . Xét biến cố A: “Sau hai lần gieo có ít nhất 1 mặt 6 chấm”. Tính xác suất biến cố A
A. 11;
B. ;
C. ;
D. 36.
Hướng dẫn giải
Đáp án đúng là: C
Không gian mẫu của trò chơi trên là tập hợp Ω =
Trong đó (i; j) là kết quả” lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm”
⇒n (Ω) = 36
Mặt khác , ta có: A = {(1; 6), (2; 6), (3; 6), (4; 6), (5; 6), (6; 6), (6; 1), (6; 2), (6; 3), (6; 4), (6; 5)}
⇒n (A) = 11
Vậy xác suất của biến cố A là : =
Câu 10. Gieo đồng tiền hai lần. Xác xuất để sau hai lần gieo thì mặt sấp xuất hiện ít nhất 1 lần
A. ;
B. ;
C. ;
D. .
Hướng dẫn giải
Đáp án đúng là: D
Ta có: Ω = {SS; SN; NS; NN} ⇒n (Ω) = 4
Gọi A là biến cố mặt sấp chỉ xuất hiện ít nhất 1 lần: A = { SN; NS; SS}
⇒n (A) = 3
Vậy xác suất của biến cố A là : =
Câu 11. Gieo hai con xúc xắc. Xác suất để tổng số chấm trên hai mặt xúc xắc chia hết cho 3 là.
A. ;
B. ;
C. ;
D..
Hướng dẫn giải
Đáp án đúng là: A
Ta có: n (Ω) = 6.6 = 36
Gọi F là biến cố tổng số chấm xuất hiện trên mặt của 2 con xúc xắc chia hết cho 3.
⇒F = {(1; 2), (1; 5), (2; 1), (2; 4), (3; 3), (3; 6), (4; 2), (5; 1), (5; 4), (6; 3), (6; 6)}
⇒n(F) = 12
Vậy xác suất của biến cố F là : = = .
Câu 12. Gieo một đồng tiền và 1 con xúc xắc . Số phần tử của không gian mẫu là.
A. 24;
B. 12;
C. 6;
D. 8.
Hướng dẫn giải
Đáp án đúng là: B
Ω = {S1; S2; S3; S4; S5; S6; N1; N2; N3; N4; N5; N6} ⇒n (Ω) = 12
Câu 13. Gieo một đồng xu cân đối 3 lần liên tiếp. Gọi H là biến cố có hai lần xuất hiện mặt sấp và một lần xuất hiện mặt ngửa. Xác suất biến cố H là:
A. ;
B. ;
C. ;
D..
Hướng dẫn giải
Đáp án đúng là: A
Ta có: n (Ω) = 2.2.2 = 8
Gọi K là biến cố tổng số chấm xuất hiện trên mặt của 2 con xúc xắc chia hết cho 3.
Mặt khác ta có: H = {SSN; SNS; NSS}⇒ n(H) = 3
Vậy xác suất của biến cố F là : = .
Câu 14. Gieo một con xúc xắc. Gọi K là biến cố số chấm xuất hiện trên con xúc xắc là một số nguyên tố. Hãy xác định biến cố K.
A. K = {1; 2; 3; 5};
B. K = {2; 3; 5};
C. K = {3; 5};
D. K = {2; 3; 5; 7}.
Hướng dẫn giải
Đáp án đúng là: B
Theo định nghĩa số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó. Vậy K = {2; 3; 5}
Câu 15. Gieo xúc xắc hai lần. Tính xác suất để tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố.
A. ;
B. ;
C. ;
D..
Hướng dẫn giải
Đáp án đúng là: C
Ta có: n (Ω) = 6.6 =36
Gọi M là biến cố tổng hai số chấm xuất hiện trên hai con xúc xắc là một số nguyên tố.
⇒M = {(1; 1), (1; 2), (2; 1),(1; 4), (4; 1), (2;3), (3;2)}⇒ n(M) = 7
Vậy xác suất của biến cố F là : = .
Xem thêm các bài trắc nghiệm Toán 10 Cánh diều hay, chi tiết khác:
Trắc nghiệm Toán 10 Bài 3: Các số liệu đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm
Trắc nghiệm Toán 10 Bài 4: Xác suất của biến cố trong một số trò chơi đơn giản
Trắc nghiệm Toán 10 Bài 5: Xác suất của biến cố
Trắc nghiệm Ôn tập chương 6
Trắc nghiệm Toán 10 Bài 1: Tọa độ của vectơ