Lý thuyết Toán 10 Bài 21: Đường tròn trong mặt phẳng tọa độ
A. Lý thuyết Đường tròn trong mặt phẳng tọa độ
1. Phương trình đường tròn
– Điểm M(x; y) thuộc đường tròn (C), tâm I(a; b), bán kính R khi và chỉ khi
(x – a)2 + (y – b)2 = R2 (1)
Ta gọi (1) là phương trình đường tròn (C).
Nhận xét:
– Phương trình (1) tương đương với: x2 + y2 – 2ax – 2by + (a2 + b2 – R2) = 0.
– Phương trình x2 + y2 – 2ax – 2by + c = 0 là phương trình của một đường tròn (C) khi và chỉ khi a2 + b2 – c > 0. Khi đó, (C) có tâm I(a; b) và bán kính
Ví dụ:
a) Viết phương trình đường tròn (C) có tâm I(2; –1) và bán kính R = 1.
b) Cho phương trình đường tròn x2 + y2 + 2x + 4y – 5 = 0. Hãy xác định tâm và bán kính của đường tròn này.
Hướng dẫn giải
a) Phương trình đường tròn (C) có tâm I(2; –1) và bán kính R = 1 là:
(x – 2)2 + (y + 1)2 = 1 .
b) Từ phương trình x2 + y2 + 2x + 4y – 5 = 0
⇔ x2 + y2 – 2.( –1).x – 2.( –2).y + (– 5) = 0
Khi đó a = –1 và b = –2, c = – 5.
Suy ra tâm của đường tròn này là I(–1; –2) và bán kính của đường tròn là:
Vậy tâm của đường tròn này là: I(–1; –2) và bán kính R= .
2. Phương trình tiếp tuyến của đường tròn.
Cho điểm M(x0; y0) thuộc đường tròn (C): (x – a)2 + (y – b)2 = R2 (tâm I(a; b), bán kính R). Khi đó, tiếp tuyến ∆ của (C) tại M(x0; y0) có vectơ pháp tuyến và phương trình:
(a – x0)(x – x0) + (b – y0)(y – y0) = 0.
Ví dụ: Cho đường tròn (C) có phương trình (x – 1)2 + (y + 2)2 = 10 và điểm M(0; 1) thuộc đường tròn (C). Hãy viết phương trình tiếp tuyến của (C) tại điểm M.
Hướng dẫn giải
Từ phương trình đường tròn (C): (x – 1)2 + (y + 2)2 = 10 suy ra tâm của (C) là I(1; –2).
Tiếp tuyến của (C) tại M là đường thẳng đi qua M và vuông góc với MI.
Khi đó tiếp tuyến của (C) tại M(0; 1) có vectơ pháp tuyến , nên ta có phương trình:
1(x – 0) + (–2)(y – 1) = 0 ⇔ x – 2y + 2 = 0.
Vậy phương trình tiếp tuyến của (C) tại M(0; 1) là x – 2y + 2 = 0.
B. Bài tập Đường tròn trong mặt phẳng tọa độ
Bài 1: Cho hai điểm A(3; –4 ); B(–3; 4).Viết phương trình đường tròn (C) nhận AB làm đường kính.
Hướng dẫn giải
Ta có ⇒ AB = =
Gọi M là trung điểm của AB.
Khi đó tọa độ của điểm M thỏa mãn: ⇒ M(0; 0).
Do đường tròn (C) có đường kính là AB nên điểm M chính là tâm của đường tròn và bán kính đường tròn
Phương trình đường tròn (C) là: (x – 0)2 + (y – 0)2 = 52 ⇔ x2 + y2 = 25.
Vậy đường tròn (C) có phương trình là x2 + y2 = 25.
Bài 2: Cho phương trình là x2 + y2 + 6x + 8y + 7 = 0. Phương trình này có phải là phương trình đường tròn hay không? Nếu có, hãy tìm tâm và bán kính của đường tròn đó.
Hướng dẫn giải
Ta có : x2 + y2 + 6x + 8y + 7 = 0 ⇔ x2 + y2 –2.( –3)x –2.( –4)y + 7 = 0.
Suy ra a = –3 ; b = –4 ; c = 7.
Vì a2 + b2 – c = (–3)2 + (–4)2 – 7 = 18 > 0 nên x2 + y2 + 6x + 8y + 7 = 0 là phương trình của một đường tròn (C).
Đường tròn (C) có tâm I(–3; –4) và bán kính .
Vậy, phương trình x2 + y2 + 6x + 8y + 7 = 0 là phương trình của một đường tròn (C) có tâm I(–3; –4) và bán kính R =
Bài 3: Một vận động viên ném đĩa vung đĩa theo một đường tròn (C) có phương trình là: x2 + y2 = .
Khi người đó vung đĩa đến vị trí điểm A( ; ) thì buông đĩa. Hãy viết phương trình tiếp tuyến của đường tròn (C).
Hướng dẫn giải
Từ phương trình đường tròn (C): x2 + y2 = suy ra tâm của (C) là O(0; 0).
Tiếp tuyến của (C) tại A( ; ) là đường thẳng đi qua A và vuông góc với OA.
Khi đó tiếp tuyến của (C) tại A( ; ) có vectơ pháp tuyến , nên có phương trình:
(x – ) + (y – ) = 0 ⇔ 3x + 4y – = 0.
Vậy phương trình tiếp tuyến của (C) tại A( ; ) là 3x + 4y – = 0.
Xem thêm các bài tóm tắt lý thuyết Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Lý thuyết Bài 20: Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách
Lý thuyết Bài 21: Đường tròn trong mặt phẳng tọa độ
Lý thuyết Bài 22: Ba đường conic
Lý thuyết Bài 23: Quy tắc đếm
Lý thuyết Bài 24: Hoán vị, chỉnh hợp và tổ hợp