Lý thuyết Toán lớp 10 Bài 3: Bất phương trình bậc nhất hai ẩn
A. Lý thuyết Bất phương trình bậc nhất hai ẩn
1. Bất phương trình bậc nhất hai ẩn
– Bất phương trình bậc nhất hai ẩn x, y có dạng tổng quát là:
Trong đó a, b, c là những số thực đã cho, a và b không đồng thời bằng 0, x và y là các ẩn số.
– Cặp số được gọi là một nghiệm của bất phương trình bậc nhất hai ẩn nếu bất đẳng thức đúng.
Nhận xét: Bất phương trình bậc nhất hai ẩn luôn có vô số nghiệm.
Ví dụ:
có dạng ax + by < c với a = 5, b = 2, c = 4 là bất phương trình bậc nhất hai ẩn.
không là bất phương trình bậc nhất hai ẩn vì có ba ẩn x, y, z.
Nghiệm của bất phương trình 5x + 2y < 4:
Xét cặp số (–1; –2) có 5.(–1) + 2(–2) = –9 < 4 nên cặp số (–1; –2) là nghiệm của bất phương trình.
Xét cặp số (0; 0) có 5.0 + 2.0 = 0 < 4 nên cặp số (0; 0) là nghiệm của bất phương trình.
Xét cặp số (–1;2) có 5.(–1) + 2.2 = –1 < 4 nên cặp số (–1;2) là nghiệm của bất phương trình.
Ta có thể tìm thêm được nhiều cặp số thỏa mãn bất phương trình đã cho. Do đó bất phương trình bậc nhất hai ẩn 5x + 2y < 4 có các cặp nghiệm là (–1; –2); (0; 0); (–1; 2) … hay bất phương trình này có vô số nghiệm.
2. Biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn trên mặt phẳng tọa độ
– Trong mặt phẳng tọa độ Oxy, tập hợp các điểm có tọa độ là nghiệm của bất phương trình được gọi là miền nghiệm của bất phương trình đó.
– Người ta chứng minh được rằng đường thẳng d có phương trình chia mặt phẳng tọa độ Oxy thành 2 nửa mặt phẳng bờ d:
+ Một nửa mặt phẳng (không kể bờ d) gồm các điểm có tọa độ thỏa mãn ;
+ Một nửa mặt phẳng (không kể bờ d) gồm các điểm có tọa độ thỏa mãn ;
Bờ d gồm các điểm có tọa độ thỏa mãn .
– Cách biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn :
+ Vẽ đường thẳng trên mặt phẳng tọa độ Oxy.
+ Lấy một điểm không thuộc d.
+ Tính và so sánh với c.
+ Nếu thì nửa mặt phẳng bờ d chứa là miền nghiệm của bất phương trình. Nếu thì nửa mặt phẳng bờ d không chứa là miền nghiệm của bất phương trình.
Chú ý: Miền nghiệm của bất phương trình là miền nghiệm của bất phương trình bỏ đi đường thẳng và biểu diễn đường thẳng bằng nét đứt.
Ví dụ: Biểu diễn miền nghiệm của bất phương trình trên mặt phẳng tọa độ:
Bước 1: Vẽ đường thẳng trên mặt phẳng tọa độ Oxy.
Bước 2: Lấy điểm không thuộc d và thay x = 0 và y = 1 vào biểu thức ta được là mệnh đề đúng.
Do đó miền nghiệm của bất phương trình là nửa mặt phẳng bờ d chứa điểm (miền không bị gạch)
B. Bài tập tự luyện
B1. Bài tập tự luận
Bài 1. Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
a) 0.x + 7y < 8;
b) x2 + y ≥ – 18;
c) 3x + 0y2 < 19;
d) 4x – 5 < 3y.
Hướng dẫn giải
Các bất phương trình là bất phương trình bậc nhất hai ẩn:
a) 0.x + 7y < 8 có dạng ax + by < c với a = 0, b = 7 và c = 8. . Do đó a) là bất phương trình bậc nhất hai ẩn.
b) x2 + y ≥ – 18 là bất phương trình bậc hai nên b) không là bất phương trình bậc nhất hai ẩn.
c) 3x + 0y2 < 19 ⇔ 3x < 19 có dạng ax + by < c với a = 3, b = 0 và c = 19. Do đó c) là bất phương trình bậc nhất hai ẩn.
d) 4x – 5 < 3y ⇔ 4x – 3y < 5 có dạng ax + by < c với a = 4, b = – 3 và c = 5. Do đó d) là bất phương trình bậc nhất hai ẩn.
Vậy các bất phương trình a, c, d là các bất phương trình bậc nhất hai ẩn.
Bài 2. Cho bất phương trình bậc nhất hai ẩn: 2x – y < 10. Cặp nghiệm nào sau đây là nghiệm của bất phương trình trên?
(x; y) = (2; 5), (4; 8), (10; 6), (4; –7), (11; 12).
Hướng dẫn giải
Thay (x; y) = (2; 5) vào bất phương trình ta có: 2.2 – 5 < 10 (luôn đúng). Do đó cặp số (2;5) là nghiệm của bất phương trình đã cho.
Thay (x; y) = (4; 8) vào bất phương trình ta có: 2.4 – 8 < 10 (luôn đúng). Do đó cặp số (4;8) là nghiệm của bất phương trình đã cho.
Thay (x; y) = (10; 6) vào bất phương trình ta có: 2.10 – 6 < 10 (vô lí). Do đó cặp số (5;6) không là nghiệm của bất phương trình đã cho.
Thay (x; y) = (4; –7) vào bất phương trình ta có: 2.4 – (– 7) < 10 (vô lí). Do đó cặp số (4;–7) không là nghiệm của bất phương trình đã cho.
Thay (x; y) = (11; 12) vào bất phương trình ta có: 2.11 – 12 < 10 (vô lí). Do đó cặp số (11;12) không là nghiệm của bất phương trình đã cho.
Vậy ta có cặp nghiệm thỏa mãn là: (x; y) = (2; 5), (4; 8).
Bài 3. Cho bất phương trình bậc nhất hai ẩn: .
a) Chỉ ra 2 nghiệm của bất phương trình trên.
b) Với x = 0 thì có bao nhiêu giá trị của y thỏa mãn bất phương trình.
Hướng dẫn giải
a) Chọn (x; y) = (0; 0)
Thay x = 0 và y = 0 vào bất phương trình đã cho ta được 4.0 + 0 ≤ 15 là mệnh đề đúng. Do đó cặp (0; 0) là nghiệm của bất phương trình.
Chọn (x; y) = (0; 1)
Thay x = 0 và y = 1 vào bất phương trình đã cho ta được 4.0 + 1 ≤ 15 là mệnh đề đúng. Do đó cặp (0; 1) là nghiệm của bất phương trình.
Vậy hai cặp nghiệm của bất phương trình: .
b) Với x = 0 thì bất phương trình trở thành: và có vô số giá trị của y thỏa mãn bất phương trình.
B2. Bài tập trắc nghiệm
Bài 4. Bất phương trình nào tương đương với bất phương trình 3x – y > 7(x – 4y) + 1?
A. 4x – 27y + 1 > 0;
B. 4x – 27y + 1 ≥ 0;
C. 4x – 27y < –1;
D. 4x – 27y + 1 ≤ 0.
Hướng dẫn giải
Đáp án đúng là: C
Ta có:
3x – y > 7(x – 4y) + 1
⇔ 3x – y > 7x – 28y + 1
⇔ 0 > 7x – 3x – 28y + y + 1
⇔ 4x – 27y + 1 < 0
⇔ 4x – 27y < –1.
Vậy ta chọn phương án C.
Bài 5. Bạn Lan để dành được 300 nghìn đồng. Trong một đợt ủng hộ học sinh khó khăn, bạn Lan đã ủng hộ x tờ tiền loại 10 nghìn đồng, y tờ tiền loại 20 nghìn đồng từ tiền để dành của mình. Trong các bất phương trình sau, bất phương trình nào diễn tả giới hạn về tổng số tiền mà bạn Lan đã ủng hộ.
A. x + y < 300;
B. 10x + y < 300;
C. 10x + 20y > 300;
D. 10x + 20y ≤ 300.
Hướng dẫn giải
Đáp án đúng là: D
Số tiền mệnh giá 10 nghìn đồng là: 10x (nghìn đồng)
Số tiền mệnh giá 20 nghìn đồng là: 20y (nghìn đồng)
Tổng số tiền bạn Lan đã ủng hộ là: 10x + 20y (nghìn đồng)
Vì tổng số tiền Lan ủng hộ không vượt quá số tiền Lan để dành được là 300 nghìn đồng nên ta có bất phương trình: 10x + 20y ≤ 300
Vậy ta chọn đáp án D.
Bài 6. Miền nghiệm của bất phương trình x + y < 1 là miền không bị gạch trong hình vẽ nào sau đây?
A.
B.
C.
D.
Hướng dẫn giải
Đáp án đúng là: A
Đường thẳng x + y = 1 chia mặt phẳng tọa độ thành hai nửa mặt phẳng.
Với cặp số (x ; y) = (0;0) ta có: 0 + 0 = 0 < 1 nên cặp số (x ; y ) = (0;0) là nghiệm của bất phương trình x + y < 1.
Do đó điểm O(0;0) thuộc miền nghiệm của bất phương trình x + y < 1.
Vậy miền nghiệm của bất phương trình x + y < 1 là nửa mặt phẳng có bờ là đường thẳng x + y = 1, chứa điểm O(0;0) (không kể bờ).
Vậy ta chọn đáp án A.
Xem thêm các bài tóm tắt lý thuyết Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Lý thuyết Bài 2: Tập hợp và các phép toán trên tập hợp
Lý thuyết Bài 3: Bất phương trình bậc nhất hai ẩn
Lý thuyết Bài 4: Hệ bất phương trình bậc nhất hai ẩn
Lý thuyết Bài 5: Giá trị lượng giác của một góc từ 00 đến 1800
Lý thuyết Bài 6: Hệ thức lượng trong tam giác