Câu hỏi:
Trong các tứ giác ở Hình 9, tứ giác nào không là hình bình hành?
Trả lời:
• Hình 9a): Tứ giác ABCD có các cạnh đối bằng nhau nên là hình bình hành.
• Hình 9b): Tứ giác EFGH có các góc đối bằng nhau nên là hình bình hành.
• Hình 9c): Tứ giác IJKL có các cạnh đối song song nên là hình bình hành.
• Hình 9d): Tứ giác MNPQ có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.
• Hình 9e): Tứ giác RSTU có hai góc đối không bằng nhau nên không là hình bình hành.
• Hình 9g): Tứ giác VXYZ có hai cạnh đối VZ và XY vừa song song vừa bằng nhau nên là hình bình hành.
Vậy trong các tứ giác ở Hình 9, tứ giác RSTU không là hình bình hành.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Quan sát hình chụp các mái nhà ở phố cổ Hội An, em thấy các cạnh đối của tứ giác ABCD có gì đặc biệt?
Câu hỏi:
Quan sát hình chụp các mái nhà ở phố cổ Hội An, em thấy các cạnh đối của tứ giác ABCD có gì đặc biệt?
Trả lời:
Quan sát hình chụp các mái nhà ở phố cổ Hội An, ta thấy các cạnh đối của tứ giác ABCD vừa song song vừa bằng nhau (AB // DC, AB = DC và AD // BC, AD = BC).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hình 1a là hình ảnh của một thước vẽ truyền dùng để phóng to hay thu nhỏ một hình vẽ có sẵn. Dùng thước đo góc để đo số đo của các cặp góc A^1 và D^, C^1 và D^ của tứ giác ABCD (Hình 1b) rồi rút ra nhận xét về mối quan hệ giữa các cặp cạnh AB và CD; AD và BC.
Câu hỏi:
Hình 1a là hình ảnh của một thước vẽ truyền dùng để phóng to hay thu nhỏ một hình vẽ có sẵn. Dùng thước đo góc để đo số đo của các cặp góc và , và của tứ giác ABCD (Hình 1b) rồi rút ra nhận xét về mối quan hệ giữa các cặp cạnh AB và CD; AD và BC.
Trả lời:
Dùng thước đo góc ta xác định được và .
Ta có và hai góc này ở vị trí đồng vị nên AB // CD.
và hai góc này ở vị trí đồng vị nên AD // BC.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tứ giác ABCD có các cạnh đối song song. Gọi O là giao điểm của hai đường chéo. Hãy chứng tỏ:
‒ Tam giác ABC bằng tam giác CDA.
‒ Tam giác OAB bằng tam giác OCD.
Câu hỏi:
Cho tứ giác ABCD có các cạnh đối song song. Gọi O là giao điểm của hai đường chéo. Hãy chứng tỏ:
‒ Tam giác ABC bằng tam giác CDA.
‒ Tam giác OAB bằng tam giác OCD.
Trả lời:
• Tứ giác ABCD có AB // DC và AD // BC.
Từ AB // DC suy ra (so le trong) và (so le trong).
Từ AD // BC suy ra (so le trong).
Xét DABC và DCDA có:
; AC là cạnh chung;
Do đó DABC = DCDA (g.c.g).
• Do DABC = DCDA nên AB = CD (hai cạnh tương ứng).
Xét DOAB và DOCD có:
; AB = CD; (chứng minh trên)
Do đó DOAB = DOCD (g.c.g).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình bình hành PQRS với I là giao điểm của hai đường chéo (Hình 4). Hãy chỉ ra các đoạn thẳng bằng nhau và các góc bằng nhau có trong hình.
Câu hỏi:
Cho hình bình hành PQRS với I là giao điểm của hai đường chéo (Hình 4). Hãy chỉ ra các đoạn thẳng bằng nhau và các góc bằng nhau có trong hình.
Trả lời:
Trong hình bình hành PQRS với I là giao điểm của hai đường chéo, ta có:
• Các đoạn thẳng bằng nhau: PQ = RS; PS = QR; IP = IR; IS = IQ.
• Các góc bằng nhau: .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Mắt lưới của một lưới bóng chuyền có dạng hình tứ giác có các cạnh đối song song. Cho biết độ dài hai cạnh của tứ giác này là 4 cm và 5 cm. Tìm độ dài hai cạnh còn lại.
Câu hỏi:
Mắt lưới của một lưới bóng chuyền có dạng hình tứ giác có các cạnh đối song song. Cho biết độ dài hai cạnh của tứ giác này là 4 cm và 5 cm. Tìm độ dài hai cạnh còn lại.
Trả lời:
Giả sử mắt lưới của lưới bóng chuyền có dạng hình tứ giác ABCD có các cạnh đối song song và độ dài hai cạnh là 4 cm, 5 cm.
Tứ giác ABCD có các cạnh đối song song nên là hình bình hành. Giả sử AB = 4 cm, AD = 5 cm.
Do đó CD = AB = 4 cm; BC = AD = 5 cm.====== **** mời các bạn xem câu tiếp bên dưới **** =====