Câu hỏi:
Gọi T là tổng, H là hiệu của hai đa thức 3x2y – 2xy2 + xy và –2x2y + 3xy2 + 1. Khi đó:
A. T = x2y – xy2 + xy + 1 và H = 5x2y – 5xy2 + xy – 1.
B. T = x2y + xy2 + xy + 1 và H = 5x2y – 5xy2 + xy – 1.
C. T = x2y + xy2 + xy + 1 và H = 5x2y – 5xy2 – xy – 1.
D. T = x2y + xy2 + xy – 1 và H = 5x2y + 5xy2 + xy – 1.
Trả lời:
Đáp án đúng là: B
Ta có:
• T = (3x2y – 2xy2 + xy) + (–2x2y + 3xy2 + 1)
= 3x2y – 2xy2 + xy – 2x2y + 3xy2 + 1
= (3x2y – 2x2y) + (3xy2 – 2xy2) + xy + 1
= x2y + xy2 + xy + 1.
• H = (3x2y – 2xy2 + xy) – (–2x2y + 3xy2 + 1)
= 3x2y – 2xy2 + xy + 2x2y – 3xy2 – 1
= (3x2y + 2x2y) – (3xy2 + 2xy2) + xy – 1
= 5x2y – 5xy2 + xy – 1.
Vậy T = x2y + xy2 + xy + 1; H = 5x2y – 5xy2 + xy – 1.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Đơn thức −23x2yz3 có
A. hệ số −2, bậc 8.
B. hệ số −23, bậc 5.
C. hệ số −1, bậc 9.
D. hệ số −23, bậc 6.
Câu hỏi:
Đơn thức −23x2yz3 có
A. hệ số −2, bậc 8.
B. hệ số −23, bậc 5.
C. hệ số −1, bậc 9.
D. hệ số −23, bậc 6.Trả lời:
Đáp án đúng là: D
Đơn thức −23x2yz3 có hệ số là −23 và có bậc là: 2 + 1 + 3 = 6.
Vậy đơn thức −23x2yz3 có hệ số là −23 và có bậc là 6.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tích của hai đơn thức 6x2yz và −2y2z2 là đơn thức
A. 4x2y3z3.
B. −12x2y3z3.
C. −12x3y3z3.
D. 4x3y3z3.
Câu hỏi:
Tích của hai đơn thức 6x2yz và −2y2z2 là đơn thức
A. 4x2y3z3.
B. −12x2y3z3.
C. −12x3y3z3.
D. 4x3y3z3.Trả lời:
Đáp án đúng là: B
Ta có 6x2yz . (−2y2z2) = [6 . (−2)] x2 (y . y2) (z . z2) = −12x2y3z3.
Vậy tích của hai đơn thức 6x2yz và −2y2z2 là đơn thức −12x2y3z3.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Khi chia đa thức 8x3y2 – 6x2y3 cho đơn thức −2xy, ta được kết quả là
A. −4x2y + 3xy2.
B. −4xy2 + 3x2y.
C. −10x2y + 4xy2.
D. −10x2y + 4xy2.
Câu hỏi:
Khi chia đa thức 8x3y2 – 6x2y3 cho đơn thức −2xy, ta được kết quả là
A. −4x2y + 3xy2.
B. −4xy2 + 3x2y.
C. −10x2y + 4xy2.
D. −10x2y + 4xy2.Trả lời:
Đáp án đúng là: A
Ta có (8x3y2 – 6x2y3) : (−2xy) = 8x3y2 : (−2xy) – 6x2y3 : (−2xy)
= −4x2y + 3xy2.
Vậy khi chia đa thức 8x3y2 – 6x2y3 cho đơn thức −2xy, ta được kết quả là −4x2y + 3xy2.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Một đa thức hai biến bậc hai thu gọn có thể nhiều nhất
a) bao nhiêu hạng tử bậc hai? Cho ví dụ.
Câu hỏi:
Một đa thức hai biến bậc hai thu gọn có thể nhiều nhất
a) bao nhiêu hạng tử bậc hai? Cho ví dụ.Trả lời:
a) Một đa thức hai biến bậc hai thu gọn có thể nhiều nhất 3 hạng tử bậc hai.
Ví dụ: 2x2 – y2 + 4xy + 5; đa thức này có 3 hạng tử bậc hai là 2x2; y2 và 4xy.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- b) Bao nhiêu hạng tử bậc nhất? Cho ví dụ.
Câu hỏi:
b) Bao nhiêu hạng tử bậc nhất? Cho ví dụ.
Trả lời:
b) Một đa thức hai biến bậc hai thu gọn có thể nhiều nhất 2 hạng tử bậc nhất.
Ví dụ: ; đa thức này có 2 hạng tử bậc nhất là 2x và 5y.====== **** mời các bạn xem câu tiếp bên dưới **** =====