Lý thuyết Toán lớp 10 Bài 1: Tọa độ của vectơ
A. Lý thuyết
I. Tọa độ của một điểm
Để xác định tọa độ của một điểm M tùy ý trong mặt phẳng tọa độ Oxy, ta làm như sau (Hình 3):
QUẢNG CÁO
+ Từ M kẻ đường thẳng vuông góc với trục hoành và cắt trục hoành tại điểm H ứng với số a. Số a là hoành độ của điểm M.
+ Từ M kẻ đường thẳng vuông góc với trục tung và cắt trục tung tại điểm K ứng với số b. Số b là tung độ của điểm M.
Cặp số (a; b) là tọa độ của điểm M trong mặt phẳng tọa độ Oxy. Ta kí hiệu là M(a ; b).
Ví dụ: Xác định tọa độ của điểm B trong hình vẽ sau:
Hướng dẫn giải
+ Từ B kẻ đường thẳng vuông góc với trục hoành và cắt trục hoành tại điểm ứng với số –3. Số –3 là hoành độ của điểm B.
+ Từ B kẻ đường thẳng vuông góc với trục tung và cắt trục tung tại điểm ứng với số 3. Số 3 là tung độ của điểm M.
Khi đó, cặp số (–3; 3) là tọa độ của điểm B.
Vậy điểm B có tọa độ là B(–3; 3).
QUẢNG CÁO
II. Tọa độ của một vectơ
Tọa độ của điểm M được gọi là tọa độ của vectơ .
Nếu có tọa độ (a; b) thì ta viết = (a; b) hay (a; b), trong đó a gọi là hoành độ của vectơ và b gọi là tung độ của vectơ (Hình 4).
Chú ý: Trong mặt phẳng tọa độ Oxy, ta có:
+ = (a; b) ⇔ M(a ; b).
+ Vectơ có điểm gốc là O và có tọa độ (1; 0) gọi là vectơ đơn vị trên trục Ox.
Vectơ có điểm gốc là O và có tọa độ (0; 1) gọi là vectơ đơn vị trên trục Oy (Hình 4).
Ví dụ: Tìm tọa độ của vectơ , trong hình sau:
Hướng dẫn giải
Ta thấy điểm M có tọa độ là (–2 ; 4)
Suy ra = (–2 ; 4).
Điểm N có tọa độ là (2 ; –1)
Suy ra = (2 ; –1).
Vậy = (–2 ; 4) và = (2 ; –1).
Nhận xét:
– Với mỗi vectơ , ta xác định được duy nhất một điểm A sao cho = .
– Với mỗi vectơ trong mặt phẳng tọa độ Oxy, tọa độ của vectơ là tọa độ của điểm A, trong đó A là điểm sao cho = .
– Nếu có tọa độ (a; b) thì ta viết = (a; b) hay (a; b), trong đó a gọi là hoành độ của vectơ và b gọi là tung độ của vectơ .
Ví dụ: Tìm tọa độ của vectơ trong hình vẽ sau:
Hướng dẫn giải
Ta xác định vectơ = như hình sau:
Ta thấy điểm A(2 ; 2) nên = (2 ; 2).
Suy ra = (2 ; 2).
Vậy = (2 ; 2).
Định lí: Trong mặt phẳng tọa độ Oxy, nếu = (a ; b) thì = a + b. Ngược lại, nếu = a + b thì = (a ; b).
Chú ý: Với = (x1 ; y1) và = (x2 ; y2), ta có = ⇔
Như vậy, mỗi vectơ hoàn toàn được xác định khi biết tọa độ của nó.
Ví dụ: Trong mặt phẳng tọa độ Oxy, cho điểm M(2; 3) và vectơ = (1; – 3).
a) Biểu diễn vectơ qua hai vectơ và .
b) Biểu diễn vectơ qua hai vectơ và .
Hướng dẫn giải
a) Vì vectơ = (1; – 3) nên = 1 + (– 3) = – 3
Vậy = – 3
b) Vì điểm M có tọa độ là (2 ; 3) nên = (2 ; 3).
Do đó: = 2 + 3.
Vậy = 2 + 3.
III. Liên hệ giữa tọa độ của điểm và tọa độ của vectơ
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(xA; yA) và B(xB; yB).
Ta có = (xB – xA ; yB – yA).
Ví dụ: Cho hai điểm A(2; –4) và B(1; 5). Hãy tìm tọa độ của vectơ .
Hướng dẫn giải
Ta có = (1 – 2; 5 – (–4)) = (–1 ; 9).
Vậy = (–1 ; 9).
B. Bài tập tự luyện
B.1 Bài tập tự luận
Bài 1. Tìm tọa độ của các vectơ sau:
a) = 3 + ;
b) = – 2;
c) = – .
Hướng dẫn giải
a) Ta có = 3 + = 3 + 1
Suy ra = (3 ; 1).
Vậy = (3 ; 1).
b) Ta có = –2 = 0 + (–2)
Suy ra = (0 ; –2).
Vậy = (0 ; –2).
c) Ta có = – = + (– ).
Suy ra = (1; – ).
Vậy = (1; – ).
Bài 2. Cho 3 điểm A(0; 2), B(–1; 3), C(2; 5). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
Hướng dẫn giải
Giả sử điểm D có tọa độ là (xD ; yD)
Ta có = (–1 – 0 ; 3 – 2) = (–1 ; 1)
= (2 – xD ; 5 – yD).
Để ABCD là hình bình hành thì = .
= ⇔ ⇔
Suy ra điểm D có tọa độ là (3 ; 4).
Vậy để ABCD là hình bình hành thì D(3 ; 4).
Bài 3. Tìm số thực m và n sao cho hai vectơ = (m; –4) và = (–1; 3m + n) bằng nhau.
Hướng dẫn giải
Ta có = ⇔ ⇔ ⇔
Vậy để = thì m = –1 và n = –1.
B.2 Bài tập trắc nghiệm
Câu 1. Trong hệ tọa độ Oxy cho A(5; 2), B(10; 8). Tìm tọa độ của vectơ .
A. = (15; 10);
B. = (2; 4);
C. = (5; 6);
D. = (50; 16).
Hướng dẫn giải
Đáp án đúng là: C
Ta có: = (10 – 5 ; 8 – 2) = (5; 6).
Câu 2. Trong hệ tọa độ Oxy cho bốn điểm A(1; 1), B(2; – 1), C(4 ; 3), D (3 ; 5). Khẳng định nào sau đây đúng?
A. Tứ giác ABCD là hình bình hành ;
B. A, B, C, D trùng nhau ;
C.
D. cùng phương.
Hướng dẫn giải
Đáp án đúng là : A
Ta có : , do đó ABCD là hình bình hành.
Câu 3. Cho hai vectơ và . Tìm các số thực a và b sao cho cặp vectơ đã cho bằng nhau:
A. a = 2, b = – 1;
B. a = – 1, b = 2;
C. a = – 1, b = – 2;
D. a = 2, b = 1.
Hướng dẫn giải
Đáp án đúng là: A
Để .
Vậy a = 2 và b = – 1.
Xem thêm các bài tóm tắt lý thuyết Toán lớp 10 Cánh diều hay, chi tiết khác:
Lý thuyết Bài 4: Xác suất của biến cố trong một số trò chơi đơn giản
Lý thuyết Bài 5: Xác suất của biến cố
Lý thuyết Bài 1: Tọa độ của vectơ
Lý thuyết Bài 2: Biểu thức tọa độ của các phép toán vectơ
Lý thuyết Bài 3: Phương trình đường thẳng