Lý thuyết Toán lớp 10 Bài 11: Tích vô hướng của hai vectơ
A.Lý thuyếtTích vô hướng của hai vectơ
1. Góc giữa hai vectơ
Cho hai vectơ và khác . Từ một điểm A tùy ý, vẽ các vectơ và . Khi đó, số đo của góc BAC được gọi là số đo góc giữa hai vectơ và hay đơn giản là góc giữa hai vectơ , , kí hiệu là (, ).
Chú ý :
+ Quy ước rằng góc giữa hai vectơ và có thể nhận một giá trị tùy ý từ 0° đến 180°.
+ Nếu (, ) = 90° thì ta nói rằng và vuông góc với nhau. Kí hiệu ⊥ hoặc ⊥ . Đặc biệt được coi là vuông góc với mọi vectơ.
Ví dụ : Cho tam giác ABC vuông tại A và . Tính , , .
Hướng dẫn giải
Ta có = .
Tam giác ABC vuông tại A nên ta có .
Suy ra: .
Vẽ sao cho = . Khi đó = = .
Mặt khác (hai góc kề bù)
Suy ra .
Do đó, = = 150°.
Vậy = 90°, = 60°, = 150°.
2. Tích vô hướng của hai vectơ
Tích vô hướng của hai vectơ khác vectơ-không và là một số, kí hiệu là ., được xác định bởi công thức sau:
. = ||.||.cos(, )
Chú ý:
+) ⊥ ⇔ . = 0.
+) . còn được viết là và được gọi là bình phương vô hướng của vectơ .
Ta có .
(Bình phương vô hướng của một vectơ bằng bình phương độ dài của vectơ đó.)
Ví dụ: Cho tam giác đều ABC có cạnh bằng 2 và có đường cao AH. Tính các tích vô hướng:
a) ;
b) .
Hướng dẫn giải
a) Vì tam giác ABC đều nên .
Suy ra: .
Vậy = 2.
b) Vì AH là đường cao của tam giác ABC nên AH ⊥ BC.
Do đó .
Ta có: .
Vậy = 0.
3. Biểu thức tọa độ và tính chất của tích vô hướng
• Tích vô hướng của hai vectơ và được tính theo công thức :
. = x.x’ + y.y’.
Nhận xét:
+ Hai vectơ và vuông góc với nhau khi và chỉ khi x.x’ + y.y’ = 0.
+ Bình phương vô hướng của là = x2 + y2.
+ Nếu ≠ và ≠ thì cos(, ) = .
Ví dụ: Trong mặt phẳng tọa độ cho hai vectơ và .
a) Tính tích vô hướng của hai vectơ trên.
b) Tìm góc giữa của hai vectơ trên.
Hướng dẫn giải
a) Ta có: . = 0. + (–5).1= –5;
Vậy . = –5.
b) Ta có ;
Suy ra : cos(, ) = .
Suy ra (, ) = 120°.
Vậy (, ) = 120°.
• Tính chất của tích vô hướng :
Với ba vectơ , , bất kì và mọi số thực k, ta có :
+) . = . (tính chất giao hoán);
+) . ( + ) = . + . (tính chất phân phối đối với phép cộng) ;
+) (k ). = k (. ) = .( k).
Chú ý: Từ tính trên, ta có thể chứng minh được :
. ( – )= . – . (tính chất phân phối đối với phép trừ) ;
( + )2 = + 2. + ; ( – )2 = –2. + ;
( + ).( – ) = – .
Ví dụ: Cho tam giác ABC. Chứng minh rằng với điểm M tùy ý ta có:
.
Hướng dẫn giải
Ta có (1)
(2)
. (3)
Cộng các kết quả từ (1), (2), (3), ta được:
Vậy .
B.Bài tập tự luyện
Bài 1: Cho hai vectơ .
a) Tính tích vô hướng của và .
b) Tính góc giữa hai vectơ và .
Hướng dẫn giải
a) Ta có . = 1.(–1) + (–2).(–3) = 5.
Vậy . = 5.
b) Ta có ; .
Khi đó cos(, ) = .
Suy ra (, ) = 45°.
Vậy góc giữa hai vectơ và là 45°.
Bài 2: Trong mặt phẳng tọa độ Oxy cho hai điểm A(2; 4) và B(1; 1). Tìm tọa độ của điểm C sao cho tam giác ABC là tam giác vuông cân tại B.
Hướng dẫn giải
Giả sử điểm C cần tìm có tọa độ (x; y). Để tam giác ABC vuông cân tại B ta phải có:
Ta có và .
Khi đó .
Và ;
Ta có:
⇔
⇔
⇔
⇔
⇔ ⇔
Xem thêm các bài tóm tắt lý thuyết Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Lý thuyết Bài 10: Vectơ trong mặt phẳng tọa độ
Lý thuyết Bài 11: Tích vô hướng của hai vectơ
Lý thuyết Bài 12: Số gần đúng và sai số
Lý thuyết Bài 13: Các số đặc trưng đo xu thế trung tâm
Lý thuyết Bài 14: Các số đặc trưng đo độ phân tán