Trắc nghiệm Toán 10 Chương 3: Hệ thức lượng trong tam giác
I. Nhận biết
Câu 1. Khẳng định nào sau đây đúng ?
A. ;
B. ;
C. ;
D. .
Hướng dẫn giải
Đáp án: A
Giải thích:
Giả sử = x.
Ta có cosx = ; sinx = .
.
Câu 2. Cho tam giác ABC. Công thức nào sau đây sai?
A. ;
B. ;
C. ;
D. .
Hướng dẫn giải
Đáp án: D
Giải thích:
Định lí sin: Trong tam giác ABC
.
Khẳng định A, B, C đúng. Khẳng định D sai.
Vậy chọn đáp án D.
Câu 3. Nội dung nào thể hiện công thức Heron?
A. S = ;
B. S = ;
C. S = ;
D. S = .
Hướng dẫn giải
Đáp án: D
Giải thích:
Công thức Heron: S = .
Câu 4. Khẳng định nào sau đây đúng ?
A. sin( 180° – α ) = – sinα;
B. cos( 180° – α ) = cosα;
C. sin( 90° – α ) = – cosα;
D. cos( 90° – α ) = sinα.
Hướng dẫn giải
Đáp án: D
Giải thích:
Hai góc bù nhau có sin bằng nhau, côsin, tang, côtang đối nhau.
Khi đó ta có:
sin( 180° – α ) = sinα;
cos( 180° – α ) = – cosα.
Do đó A và B sai.
Hai góc phụ nhau có sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.
Khi đó ta có:
sin( 90° – α ) = cosα;
cos( 90° – α ) = sinα.
Do đó C sai và D đúng.
Câu 5. Cho tam giác ABC với độ dài 3 cạnh BC, AC, AB lần lượt là a, b, c. Nội dung nào thể hiện định lí côsin?
A. ;
B. a2 = b2 + c2 – 2bccosA;
C. S = bcsinA = acsinB = absinC;
D. b2 = a2 + c2 – 2bccosB .
Hướng dẫn giải
Đáp án: B
Giải thích:
Định lí côsin: Trong tam giác ABC
a2 = b2 + c2 – 2bccosA
b2 = a2 + c2 – 2accosB
c2 = b2 + a2 – 2bacosC.
Vậy đáp án đúng là B.
Câu 6. M là điểm trên nửa đường trong lượng giác sao cho = α. Tọa độ của điểm M là:
A. (sin α; cos α);
B. (cos α; sin α);
C. (– sin α; cos α);
D. ( – cos α; – sin α).
Hướng dẫn giải
Đáp án: B
Giải thích:
Định nghĩa tỉ số lượng giác của 1 góc bất kì từ 0° đến 180°:
Với góc α cho trước, 0° ≤ α ≤ 180°.
Gọi M(x0;y0) là điểm trên nửa đường tròn đơn vị nói trên sao cho = α. Ta có:
+ Sin của góc α là tung độ y0 của điểm M kí hiệu là sinα.
+ Côsin của góc α là hoành độ x0 của điểm M kí hiệu là cosα.
Câu 7. Cho tam giác ABC với độ dài 3 cạnh BC, AC, AB lần lượt là a, b, c. Khẳng định nào dưới đây đúng?
A. a2 = b2 + c2 + 2bcsinA;
B. a2 = b2 + c2 – 2bccosA;
C. a2 = b2 + c2 – 2acsinA;
D. a2 = b2 + c2 + 2abcosA.
Hướng dẫn giải
Đáp án: B
Giải thích:
Định lí côsin:
Trong tam giác ABC: a2 = b2 + c2 – 2bccosA.
Vậy đáp án đúng là B.
Câu 8. Khẳng định nào sau đây đúng ?
A. sin45° = ;
B. cos45° = 1;
C. tan45° = 1;
D. cot45° = .
Hướng dẫn giải
Đáp án: C
Giải thích:
Sử dụng máy tính cầm tay ta tính được:
sin45° = ; cos45° = ; tan45° = 1; cot45° = 1.
Do đó A, B, D sai và C đúng.
Câu 9. Cho tam giác ABC với độ dài 3 cạnh BC, AC, AB lần lượt là a, b, c. Công thức tính diện tích nào dưới đây đúng?
A. S = bcsinA;
B. S = absinB;
C. S = 2acsinB;
D. S = 2bcsinA.
Hướng dẫn giải
Đáp án: A
Giải thích:
Công thức tính diện tích tam giác ABC: S = bcsinA.
Câu 10. Cho tam giác ABC với độ dài 3 cạnh BC, AC, AB lần lượt là a, b, c. Nội dung nào thể hiện định lí sin?
A. ;
B. a2 = b2 + c2 – 2bccosA;
C. S = bcsinA = acsinB = absinC;
D. b2 = a2 + c2 – 2accosB .
Hướng dẫn giải
II. Thông hiểu
Câu 1. Cho tam giác ABC có a = 2, b = 5, c = 5. Tính bán kính đường tròn nội tiếp tam giác ABC.
A. 1;
B. ;
C. 0,5;
D. .
Hướng dẫn giải
Đáp án: D
Giải thích:
Ta có: p = = 6
Áp dụng công thức Heron:
S = .
S =
S = .
Mà S = pr = 6r = ⇒ r = .
Vậy đáp án đúng là D.
Câu 2. Tính giá trị biểu thức P = sin30°.cos15° + sin150°.cos165°
A. 0;
B. 1;
C. – 1;
D. 0,5.
Hướng dẫn giải
Đáp án: A
Giải thích:
Sử dụng công thức: sin( 180° – α ) = sinα và cos( 180° – α ) = – cosα.
Có sin30° = sin150°; cos15° = – cos165°
P = sin30°.cos15° – sin30°.cos15°= 0.
Câu 3. Tam giác ABC có AB = , BC = , CA = . Tính số đo góc A.
A. 60°;
B. 90°;
C. 120°;
D. 30°.
Hướng dẫn giải
Đáp án: C
Giải thích:
Đặt AB = c, BC = a, AC = b
Theo định lí côsin ta có: a2 = b2 + c2 – 2bccosA
⇒ cosA =
⇒ cosA =
⇒ cosA =
⇒ = 120°.
Vậy đáp án C đúng.
Câu 4. Tính giá trị biểu thức S = sin235° + cos225° + sin255° + cos265°.
A. 3;
B. 2;
C. 1;
D. 0.
Hướng dẫn giải
Đáp án: B
Giải thích:
Sử dụng: sin( 90° – α ) = cosα và cos( 90° – α ) = sinα
S = sin235° + cos225° + sin255° + cos265°
⇔ S = sin235° + cos225° + [ sin(90° – 35°)]2 + [ cos(90° – 25°)]2
⇔ S = sin235° + cos225° + cos235° + sin225°
⇔ S = ( sin235° + cos235° ) + ( cos225° + sin225° )
⇔ S = 2.
Câu 5. Tính diện tích tam giác ABC có b = 2, = 30°, = 45°.
A. 1 + ;
B. 1 – ;
C. ;
D. .
Hướng dẫn giải
Đáp án: A
Giải thích:
Xét tam giác ABC có: + + = 180° ⇒ = 180° – 30° – 45° = 105°.
Áp dụng định lí sin: ⇒ ⇒ c = .
S = bcsinA = .2..sin105° = 1 +
Vậy đáp án A đúng.
Câu 6. Biểu thức P = tan15°.tan25°.tan35°.tan55°.tan65°.tan75° có giá trị bằng?
A. 2;
B. –1;
C. 1;
D. 0.
Hướng dẫn giải
Đáp án: C
Giải thích:
Sử dụng công thức: tan( 90° – α ) = cotα và hay tanα.cotα = 1
P = tan15°.tan25°.tan35°.tan55°.tan65°.tan75°
⇔ P = tan15°.tan25°.tan35°.cot35°.cot25°.cot15°
⇔ P = (tan15°.cot15°)(tan25°.cot25°).(tan35°.cot35°)
⇔ P = 1.1.1
⇔ P = 1.
Câu 7. Cho tam giác ABC có BC = 8 và = 30°. Tính bán kính đường tròn ngoại tiếp tam giác ABC.
A. ;
B. ;
C. 16;
D. 8.
Hướng dẫn giải
Đáp án: D
Giải thích:
Áp dụng định lí sin trong tam giác ABC:
= 2R
R =
R =
R = 8.
Vậy đáp án đúng là D.
Câu 8. Cho tam giác ABC có b = 8, c = 5 và = 80°. Tính số đo góc C.
A. 37°98’;
B. 38°98’;
C. 37°59’;
D. 36°98’.
Hướng dẫn giải
Đáp án: C
Giải thích:
Áp dụng định lí sin:
⇒
⇒ sin C = 5 :
⇒ ≈ 37°59’
Vậy đáp án đúng là C.
Câu 9. Cho tam giác ABC có a = 3, b = 4, c = 5. Tính diện tích tam giác ABC.
A. ;
B. 6;
C. 12;
D. 8.
Hướng dẫn giải
Đáp án: B
Giải thích:
Ta có: p = = 6
Áp dụng công thức Heron:
S = .
S =
S = 6.
Vậy đáp án đúng là B.
Câu 10. Cho tam giác ABC. Tính P = sinA.cos(B + C) + sin(B + C).cosA
A. 0;
B. 1;
C. -1;
D. 0,5.
Hướng dẫn giải
Đáp án: A
Giải thích:
Giả sử: = α; . Do , là 3 góc trong tam giác nên α + β = 180°
⇒ β = 180° – α
⇒ sinβ = sin(180° – α) = sinα và cosβ = cos( 180° – α ) = – cosα
P = sinA.cos(B + C) + sin(B + C).cosA = sinα.cosβ + sinβ.cos α = sinα.(–cosα) + sinα.cos α = 0.
Câu 11. Cho tam giác ABC có = 120°, AB = 6, BC = 7. Tính AC.
A. ;
B. ;
C. 8;
D. .
Hướng dẫn giải
Đáp án: A
Giải thích:
Áp dụng định lí côsin trong tam giác ABC:
AC2 = AB2 + BC2 – 2AB.BC.cosB
AC2 = 62 + 72 – 2.6.7.cos120°
AC2 = 127
AC =
Vậy đáp án A đúng.
Câu 12. Cho P = ( sinα + cosβ)(sinα − cosβ) + (cosα + sinβ)(cosα − sinβ)
Giá trị của biểu thức P là?
A. 1;
B. 0;
C. 2;
D. 3.
Hướng dẫn giải
Đáp án: B
Giải thích:
P = ( sinα + cosβ)(sinα − cosβ) + (cosα + sinβ)(cosα − sinβ)
⇔ P =
⇔ P = 0
Câu 13. Tính giá trị biểu thức A = cot20° + cot40° + cot60° + …. + cot160°
A. 1;
B. 2;
C. 0;
D. 4.
Hướng dẫn giải
Đáp án: C
Giải thích:
Sử dụng cot( 180° – α ) = – cotα với 0° < α < 180°
Hay cot( 180° – α ) + cotα = 0
A = ( cot20° + cot160°) + ( cot40° + cot140°) + ( cot60° + cot120°) + ( cot80° + cot100°)
⇔ A = 0.
Câu 14. Cho tam giác ABC có AB = 5, AC = 6, BC = 7. Tính cosB.
A. ;
B. ;
C. ;
D. .
Hướng dẫn giải
Đáp án: C
Giải thích:
Áp dụng định lí côsin trong tam giác ABC, có:
AC2 = AB2 + BC2 – 2AB.BC.cosB
62 = 52 + 72 – 2.5.7.cosB
cosB =
cosB =
Vậy đáp án đúng là C.
Câu 15. Cho góc α biết sinα + cosα = . Tính A = sinα.cosα
A. ;
B. ;
C. ;
D. .
Hướng dẫn giải
Đáp án: A
Giải thích:
⇔ .
III. Vận dụng
Câu 1. Tam giác ABC có BC = a, AC = b, AB = c. Các cạnh a, b, c liên hệ với nhau bằng đẳng thức b.( b2 – a2 ) = c.( a2 – c2 ). Tính .
A. 120°;
B. 90°;
C. 30°;
D. 60°.
Hướng dẫn giải
Đáp án: D
Giải thích:
b.( b2 – a2 ) = c.( a2 – c2 )
⟺ b3 – a2b – a2c + c3 = 0
⟺ b3 + c3 – ( a2b + a2c ) = 0
⟺ ( b + c )( b2 – bc + c2 ) – a2( b + c ) = 0
⟺ ( b + c ) ( b2 + c2 – a2 – bc ) = 0
b và c là cạnh tam giác nên b + c > 0
⇒ b2 + c2 – a2 – bc = 0 hay a2 = b2 + c2 – bc
Theo định lí côsin
a2 = b2 + c2 – 2bccosA
mà a2 = b2 + c2 – bc ⇒ cosA = ⇒ = 60°.
Vậy đáp án đúng là D.
Câu 2. Cho 3cosα – sinα = 1; 0° < α < 90°. Tính tanα.
A. ;
B. ;
C. ;
D. .
Hướng dẫn giải
Đáp án: A
Giải thích:
3cosα – sinα = 1
⇔ 3cosα = 1 + sinα
⇒ 9cos2α = (sinα + 1)2 = sin2α + 2.sin α +1
⇒ 9 – 9sin2 α = sin2α + 2.sin α +1
⇒ 10 sin2α + 2.sinα – 8 = 0
⇒ sinα = – 1 hoặc sinα =
Với sinα = – 1 không thỏa mãn
Với sinα = ⇒ cosα =
Vậy tanα = .
Câu 3. Trên nóc tòa nhà có một cột ăng – ten cao 5m. Từ vị trí quan sát A cao 7m so với mặt đất có thể quan sát được đỉnh B và chân C của cột ăng – ten dưới góc 50° và 40° so với phường nằm ngang. Chiều cao của tòa nhà gần nhất với giá trị nào sau đây?
A. 12m;
B. 19m;
C. 29m;
D. 24m.
Hướng dẫn giải
Đáp án: B
Giải thích:
Gọi điểm H là chân tòa nhà. Điểm D là điểm tương ứng trên tòa nhà ngang bằng với vị trí quan sát A. Như vậy = 90°.
Từ vị trí quan sát A cao 7m so với mặt đất có thể quan sát được đỉnh B và chân C của cột ăng – ten dưới góc 50° và 40° so với phường nằm ngang. Như vậy = 40° và = 50°.
Xét tam giác ABD có: = 180 – – = 180° – 90° – 50° = 40° = .
Xét tam giác ABC có:
= 50° – 40° = 10°.
Áp dụng định lí sin cho tam giác ABC:
⇒ ⇒ AC ≈ 18,5m
Áp dụng định lí sin cho tam giác ADC:
⇒ ⇒ CD ≈ 11,9m
Chiều cao tòa nhà tương ứng với đoạn CH.
CH = CD + DH = 11,9 + 7 = 18,9 ≈ 19m.
Vậy đáp án đúng là B.
Câu 4. Cho biết . Tính cotα biết 0° < α < 90°.
A. ;
B. ;
C. ;
D. .
Hướng dẫn giải
Đáp án: C
Giải thích:
2cosα + sinα = 2 ⟺ sinα = 2 – 2cosα ⇒ 2sin2α = 4 – 8cos + 4 cos2α
⟹ 2 – 2cos2α = 4 – 8cosα + 4cos2α
⟹ 6cos2 α – 8cosα + 2 = 0
cosα = 1 không thỏa mãn 0° < α < 90°.
cosα = ⇒ cotα= .
Câu 5. Hai chiếc tàu thủy cùng xuất phát từ vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 60°. Tàu tới B chạy với tốc độ 20 hải lí một giờ. Tàu tới C chạy với tốc độ 15 hải lí một giờ. Hỏi sau hai giờ hai tàu cách nhau bao nhiêu hải lí? ( Chọn kết quả gần nhất ).
A. 61 hải lí;
B. 36 hải lí;
C. 18 hải lí;
D. 21 hải lí.
Hướng dẫn giải
Đáp án: B
Giải thích:
Sau 2h, tàu tới C đi được đoạn đường b = 15.2 = 30 ( hải lí )
Sau 2h, tàu tới B đi được đoạn đường c = 15.2 = 40 ( hải lí )
Dựa vào hình vẽ, sau 2h, tàu B và tàu C tạo với điểm xuất phát một tam giác ABC có
= 60°, b = 30, c = 40 và a = BC.
Áp dụng định lí côsin ta có:
a2 = b2 + c2 – 2bccosA
a2 = 302 + 402 – 2.30.40.cos60°
a2 = 1300
a ≈ 36 ( hải lí ).
Vậy đáp án đúng là B.
Xem thêm các bài trắc nghiệm Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Trắc nghiệm Bài 6: Hệ thức lượng trong tam giác
Trắc nghiệm Bài ôn tập cuối chương 3
Trắc nghiệm Toán 10 Bài 7: Các khái niệm mở đầu
Trắc nghiệm Toán 10 Bài 8: Tổng và hiệu của hai vectơ
Trắc nghiệm Toán 10 Bài 9: Tích của một vectơ với một số