Câu hỏi:
Điền vào chỗ trống nội dung phù hợp.
Nếu góc xOt và góc tOy là hai góc kề bù thì tổng số đo hai góc bằng 180o.
Giả thiết ………..
A. kết luận;
Đáp án chính xác
B. khẳng định;
C. chứng minh;
D. Cả 3 đáp án đều đúng.
Trả lời:
Đáp án đúng là: A
Phần nằm giữa từ “Nếu” và từ “thì” là phần giả thiết vậy phần nằm sau từ “thì” là phần kết luận.
Vậy chọn đáp án A.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình vẽ. Tính góc FEC, biết EF // DC và \[\widehat {ECB} = 60^\circ \]:
Câu hỏi:
Cho hình vẽ. Tính góc FEC, biết EF // DC và \[\widehat {ECB} = 60^\circ \]:
A. 50°;
B. 40°;
C. 60°;
D. 30°.
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
Vì EF // DC nên ta có: \[\widehat {ECD} = \widehat {F{\rm{E}}C}\] (hai góc so le trong)
Ta có \[\widehat {BCD} = 90^\circ \] hay \[\widehat {FCE} + \widehat {ECD} = 90^\circ \] suy ra \[\widehat {ECD} = 90^\circ – 60^\circ = 30^\circ \].
Do đó \[\widehat {FEC} = \widehat {ECD} = 30^\circ \].
Vậy chọn đáp án D.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình bình hành ABCD như hình vẽ.
Chọn phương án đúng.
Câu hỏi:
Cho hình bình hành ABCD như hình vẽ.
Chọn phương án đúng.A. \[\widehat {ABC}\] và \[\widehat {ADC}\] là hai góc kề bù;
B. \[\widehat {AOB}\] và \[\widehat {BOC}\] là hai góc so le trong;
C. \[\widehat {BAD}\] và \[\widehat {ADC}\] là hai góc đồng vị;
D. \[\widehat {AOB}\] và \[\widehat {DOC}\] là hai góc đối đỉnh.
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
\[\widehat {ABC}\] và \[\widehat {ADC}\] là hai góc kề bù là phát biểu sai vì hai góc này không chung đỉnh.
\[\widehat {AOB}\] và \[\widehat {BOC}\] là hai góc so le trong là phát biểu sai, vì \[\widehat {AOB}\] và \[\widehat {BOC}\] là hai góc kề bù;
\[\widehat {BAD}\] và \[\widehat {ADC}\] là hai góc đồng vị là phát biểu sai, vì \[\widehat {BAD}\] và \[\widehat {ADC}\] là hai góc trong cùng phía.
\[\widehat {AOB}\] và \[\widehat {DOC}\] là hai góc đối đỉnh là phát biểu đúng, chọn phương án D.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình bình hành ABCD như hình vẽ. Biết IJ // DC và \[\widehat {JOC} = 34^\circ \].
Số đo góc OCD là:
Câu hỏi:
Cho hình bình hành ABCD như hình vẽ. Biết IJ // DC và \[\widehat {JOC} = 34^\circ \].
Số đo góc OCD là:A. 60°;
B. 34°;
Đáp án chính xác
C. 40°;
D. 84°.
Trả lời:
Đáp án đúng là: B.
Vì DC // IJ nên ta có: \[\widehat {JOC} = \widehat {OCD}\] (hai góc so le trong).
Do đó \[\widehat {OCD} = \widehat {JOC} = 34^\circ \].
Vậy chọn đáp án B.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình thang ABCD như hình vẽ. Biết MN // DC, \[\widehat {DAB} = 120^\circ \] và \[\widehat {ANM} = 40^\circ \]. Số đo góc AHD là:
Câu hỏi:
Cho hình thang ABCD như hình vẽ. Biết MN // DC, \[\widehat {DAB} = 120^\circ \] và \[\widehat {ANM} = 40^\circ \]. Số đo góc AHD là:
A. 60°;
B. 40°;
Đáp án chính xác
C. 30°;
D. 125°.
Trả lời:
Đáp án đúng là: B
Vì MN // DC do đó \(\widehat {ANM} = \widehat {AHD}\) (hai góc đồng vị).
Mà \[\widehat {ANM} = 40^\circ \] nên \[\widehat {AHD} = 40^\circ \].
Vậy chọn đáp án B.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình vẽ dưới đây, biết a // b. Tính x, y.
Câu hỏi:
Cho hình vẽ dưới đây, biết a // b. Tính x, y.
A. x = 60° và y = 35°;
B. x = 120° và y = 145°;
C. x = 35° và y = 60°;
D. x = 145° và y = 120°.
Đáp án chính xác
Trả lời:
Đáp án đúng là: DVì a // b nên \[\widehat {BAD} = \widehat {ADb’} = 35^\circ \] (hai góc so le trong)Mà \[\widehat {ADb’}\] và \[\widehat {ADC}\] là hai góc kề bù nên suy ra \[\widehat {ADC} + \widehat {ADb’} = 180^\circ \Rightarrow x + 35^\circ = 180^\circ \] Suy ra, x = 180o ‒ 35° = 145°Vì a // b nên \[\widehat {ABC} = \widehat {BCb} = 60^\circ \] (hai góc trong so le trong)Mà \[\widehat {BCb}\] và \[\widehat {bCd’}\] là hai góc kề bù nên suy ra \[\widehat {BCb} + \widehat {bCd’} = 180^\circ \Rightarrow 60^\circ + y = 180^\circ \]Suy ra \[y = 180^\circ – 60^\circ = 120^\circ \]Vậy x = 145° và y = 120°.
====== **** mời các bạn xem câu tiếp bên dưới **** =====