Câu hỏi:
Cho ∆ABC cân tại A. Gọi CP, BQ là các đường phân giác của ∆ABC (P ∈ AB, Q ∈ AC). Gọi O là giao điểm của CP và BQ. Cho các khẳng định sau:
(I) ∆OBC cân;
(II) O cách đều ba cạnh AB, AC, BC;
(III) AO là đường trung trực của đoạn thẳng BC;
(IV) CP = BQ;
(V) ∆APQ cân tại P.
Số khẳng định đúng là:
A. 2
B. 3
C. 4
Đáp án chính xác
D. 5
Trả lời:
Đáp án đúng là: C
Ta xét phát biểu (I):
Vì ∆ABC cân tại A nên ta có (1).
Vì BQ, CP là các đường phân giác của ∆ABC nên và (2).
Từ (1), (2), ta suy ra .
Suy ra ∆OBC cân tại O.
Do đó phát biểu (I) đúng.
Ta xét phát biểu (II):
∆ABC có hai đường phân giác BQ, CP cắt nhau tại O.
Suy ra O là giao điểm của ba đường phân giác của ∆ABC.
Khi đó O cách đều ba cạnh AB, AC và BC (tính chất ba đường phân giác).
Do đó phát biểu (II) đúng.
Ta xét phát biểu (III):
Ta có AB = AC (do ∆ABC cân tại A)
Suy ra điểm A thuộc đường trung trực của đoạn thẳng BC (1).
Lại có OB = OC (do ∆OBC cân tại O)
Suy ra điểm O thuộc đường trung trực của đoạn thẳng BC (2).
Từ (1), (2), ta được AO là đường trung trực của đoạn thẳng BC.
Do đó phát biểu (III) đúng.
Ta xét phát biểu (IV):
Xét ∆PBC và ∆QCB, có:
BC là cạnh chung.
(chứng minh trên).
(do ∆ABC cân tại A).
Do đó ∆PBC = ∆QCB (g.c.g).
Suy ra CP = BQ (cặp cạnh tương ứng).
Do đó phát biểu (IV) đúng.
Ta có AB = AC (do ∆ABC cân tại A) và BP = CQ (do ∆PBC = ∆QCB).
Suy ra AB – BP = AC – CQ.
Do đó AP = AQ.
Khi đó ∆APQ cân tại A.
Do đó phát biểu (V) sai.
Vậy ta có 4 phát biểu đúng là: (I), (II), (III), (IV).
Do đó ta chọn đáp án C.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình vẽ bên:
Biết CI, BI là hai đường phân giác của ∆ABC. Tìm x.
Câu hỏi:
Cho hình vẽ bên:
Biết CI, BI là hai đường phân giác của ∆ABC. Tìm x.A. x = 30°;
Đáp án chính xác
B. x = 60°;
C. x = 90°;
D. x = 120°.
Trả lời:
Đáp án đúng là: A
Ta có CI, BI là hai đường phân giác của ∆ABC nên:
+)
+)
Do đó .
.
∆ABC có: (định lí tổng ba góc trong tam giác)
Suy ra .
∆ABC có hai đường phân giác CI, BI cắt nhau tại I.
Suy ra AI là đường phân giác thứ ba của ∆ABC.
Do đó .
Khi đó x = 30°.
Vậy ta chọn đáp án A.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho ∆ABC có AB = 3 cm, AC = 5 cm, BC = 6 cm. Gọi O là giao điểm của các tia phân giác xuất phát từ đỉnh B và đỉnh C của ∆ABC. Kẻ OH ⊥ BC tại H, OK ⊥ AB tại K và OI ⊥ AC tại I. Độ dài đoạn thẳng HB bằng:
Câu hỏi:
Cho ∆ABC có AB = 3 cm, AC = 5 cm, BC = 6 cm. Gọi O là giao điểm của các tia phân giác xuất phát từ đỉnh B và đỉnh C của ∆ABC. Kẻ OH ⊥ BC tại H, OK ⊥ AB tại K và OI ⊥ AC tại I. Độ dài đoạn thẳng HB bằng:
A. 1 cm;
B. 2 cm;
Đáp án chính xác
C. 3 cm;
D. 4 cm.
Trả lời:
Đáp án đúng là: B
Vì ba đường phân giác của ∆ABC cùng đi qua một điểm nên giao điểm O của hai đường phân giác xuất phát từ đỉnh B và đỉnh C cũng thuộc đường phân giác xuất phát từ đỉnh A.
Do đó AO là đường phân giác xuất phát từ đỉnh A của ∆ABC.
Xét ∆AOK và ∆AOI, có:
AO là cạnh chung.
(AO là đường phân giác xuất phát từ đỉnh A của ∆ABC).
.
Do đó ∆AOK = ∆AOI (cạnh huyền – góc nhọn).
Suy ra AK = AI (cặp cạnh tương ứng).
Chứng minh tương tự, ta được BK = BH và CI = CH.
Do đó BK + CI = BH + CH
Suy ra BK + CI = BC (vì H ∈ BC).
Vì vậy BK + CI = 6 (cm).
Khi đó ta có (AB – AK) + (AC – AI) = 6
Suy ra AB + AC – AK – AI = 6
Do đó 3 + 5 – 2AK = 6 (vì AI = AK)
Vì vậy 8 – 2AK = 6
Suy ra 2AK = 8 – 6 = 2.
Do đó AK = 2 : 2 = 1 (cm)
Ta có BK = AB – AK = 3 – 1 = 2 (cm)
Suy ra BH = BK = 2 cm.
Vậy ta chọn đáp án B.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho ∆ABC biết ABC^=60°, BAC^=80°. Gọi I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác này. Số đo ICA^ bằng:
Câu hỏi:
Cho ∆ABC biết , . Gọi I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác này. Số đo bằng:
A. 40°;
B. 20°;
Đáp án chính xác
C. 30°;
D. 80°.
Trả lời:
Đáp án đúng là: B
∆ABC có: (định lí tổng ba góc của tam giác)
Suy ra .
Ta có I là điểm nằm trong tam giác và cách đều ba cạnh của ∆ABC (giả thiết).
Ta suy ra I là giao điểm của ba đường phân giác của ∆ABC.
Do đó .
Vậy ta chọn đáp án B.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho ∆MNP có N^=50°, P^=60°. Các đường phân giác NE, PF cắt nhau ở H. Số đo NHP^ bằng:
Câu hỏi:
Cho ∆MNP có , . Các đường phân giác NE, PF cắt nhau ở H. Số đo bằng:
A. 70°;
B. 75°;
C. 100°;
D. 125°.
Đáp án chính xác
Trả lời:
Đáp án đúng là:D
∆MNP có NE, PF là hai đường phân giác.
Suy ra và .
∆NHP có: (định lí tổng ba góc của tam giác)
Suy ra .
Vậy ta chọn đáp án D.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho xOy^ có tia phân giác Oz. Trên tia Ox, lấy điểm A bất kỳ. Từ A kẻ đường thẳng vuông góc với Ox, đường thẳng này cắt Oz tại H và cắt Oy tại K. Lấy điểm B trên tia Ox sao cho KA là đường phân giác của OKB^. Kẻ HI ⊥ OK (I ∈ OK). Khẳng định nào sau đây đúng nhất?
Câu hỏi:
Cho có tia phân giác Oz. Trên tia Ox, lấy điểm A bất kỳ. Từ A kẻ đường thẳng vuông góc với Ox, đường thẳng này cắt Oz tại H và cắt Oy tại K. Lấy điểm B trên tia Ox sao cho KA là đường phân giác của . Kẻ HI ⊥ OK (I ∈ OK). Khẳng định nào sau đây đúng nhất?
A. ∆OAK = ∆BAK;
B. HA = HI;
C. A là trung điểm của OB;
D. Cả A, B, C đều đúng.
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
Ta xét đáp án A:
Xét ∆OAK và ∆BAK, có:
AK là cạnh chung.
(do KA là đường phân giác của ).
.
Do đó ∆OAK = ∆BAK (cạnh góc vuông – góc nhọn kề).
Suy ra đáp án A đúng.
Ta xét đáp án B:
∆OBK có hai đường phân giác OH, KH cắt nhau tại H.
Suy ra H cách đều OK và OB (tính chất ba đường phân giác của tam giác)
Do đó HA = HI (do HA ⊥ OB, HI ⊥ OK).
Suy ra đáp án B đúng.
Ta xét đáp án C:
Ta có ∆OAK = ∆BAK (chứng minh trên).
Suy ra OA = AB.
Khi đó A là trung điểm của OB.
Do đó đáp án C đúng.
Vậy ta chọn đáp án D.====== **** mời các bạn xem câu tiếp bên dưới **** =====