Câu hỏi:
Tìm hệ số của x3 trong khai triển:
a) (1 – 3x)8;
b) .
Trả lời:
Hướng dẫn giải
a) Áp dụng công thức nhị thức Newton, ta có:
(1 – 3x)8 =
Số hạng chứa x3 ứng với giá trị k = 3. Hệ số của số hạng này là
b) Áp dụng công thức nhị thức Newton, ta có:
=
Số hạng chứa x3 ứng với giá trị k = 3. Hệ số của số hạng này là
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chứng minh rằng với mọi số tự nhiên n≥1, ta có
2.21 + 3.22 + 4.23 + … + (n + 1).2n = n.2n + 1.
Câu hỏi:
Chứng minh rằng với mọi số tự nhiên , ta có
2.21 + 3.22 + 4.23 + … + (n + 1).2n = n.2n + 1.Trả lời:
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có 2.21 = 4 = 1.21 + 1.
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:
2.21 + 3.22 + 4.23 + … + (k + 1).2k = k.2k + 1.
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:
2.21 + 3.22 + 4.23 + … + (k + 1).2k + [(k + 1) + 1].2k + 1 = (k + 1)2(k + 1) + 1.
Thật vậy, sử dụng giả thiết quy nạp ta có:
2.21 + 3.22 + 4.23 + … + (k + 1).2k + [(k + 1) + 1].2k + 1
= k.2k + 1 + [(k + 1) + 1].2k + 1
= (2k + 2).2k + 1
= (k + 1).2.2k + 1
= (k + 1)2k + 2
= (k + 1).2(k + 1) + 1.
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Đặt Sn=11.3+13.5+…+1(2n−1)(2n+1).
a) Tính S1, S2, S3.
b) Dự đoán công thức tính tổng Sn và chứng minh nó bằng quy nạp.
Câu hỏi:
Đặt .
a) Tính S1, S2, S3.
b) Dự đoán công thức tính tổng Sn và chứng minh nó bằng quy nạp.Trả lời:
a)
b) Từ a) ta có thể dự đoán
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:
Thật vậy, sử dụng giả thiết quy nạp ta có:
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chứng minh rằng với mọi số tự nhiên n, ta có 102n + 1 + 1 chia hết cho 11.
Câu hỏi:
Chứng minh rằng với mọi số tự nhiên n, ta có 102n + 1 + 1 chia hết cho 11.
Trả lời:
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 0 ta có 102.0 + 1 + 1 = 11 ⁝ 11.
Như vậy khẳng định đúng cho trường hợp n = 0.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: 102k + 1 + 1 chia hết cho 11.
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: 102(k + 1) + 1 + 1 chia hết cho 11.
Thật vậy, ta có:
102(k + 1) + 1 + 1
= 10(2k + 1) + 2 + 1
= 100.102k + 1 + 1
= 100.102k + 1 + 100 – 100 + 1
= 100(102k + 1 + 1) – 100 + 1
= 100(102k + 1 + 1) – 99.
Vì 102k + 1 + 1 và 99 đều chia hết cho 11 nên 100(102k + 1 + 1) – 99 chia hết cho 11. Do đó 102(k + 1) + 1 + 1 chia hết cho 11.
Vậy khẳng định đúng với mọi số tự nhiên n.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có 5n ≥ 3n + 4n.
Câu hỏi:
Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có 5n ≥ 3n + 4n.
Trả lời:
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 2 ta có 52 = 25 = 32 + 42.
Như vậy khẳng định đúng cho trường hợp n = 2.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: 5k ≥ 3k + 4k.
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: 5k + 1 ≥ 3k + 1 + 4k + 1.
Thật vậy, sử dụng giả thiết quy nạp ta có:
5k + 1 = 5.5k ≥ 5(3k + 4k) = 5. 3k + 5.4k ≥ 3. 3k + 4.4k = 3k + 1 + 4k + 1.
Vậy khẳng định đúng với mọi số tự nhiên n.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- a) Khai triển (1 + x)10.
b) (1,1)10 và 2.
Câu hỏi:
a) Khai triển (1 + x)10.
b) (1,1)10 và 2.Trả lời:
a)
b) Áp dụng câu a) ta có:
====== **** mời các bạn xem câu tiếp bên dưới **** =====