Bài tập Toán 8 Hằng đẳng thức đáng nhớ
A. Bài tập Hằng đẳng thức đáng nhớ
Bài 1. Những đẳng thức nào sau đây là hằng đẳng thức?
a) 2x + 1 = x + 5;
b) x(x + 1) =x2 + x;
c) 4a(a – 1) = 4a2 – 4a;
d) 2a + b = 2b + a.
Hướng dẫn giải
a) Đẳng thức 2x + 1 = x + 5 không là hằng đẳng thức vì khi ta thay x = 2 thì hai vế của đẳng thức không bằng nhau.
b) Đẳng thức x(x + 1) =x2 + x là hằng đẳng thức.
c) Đẳng thức 4a(a – 1) = 4a2 – 4a là hằng đẳng thức.
d) Đẳng thức 2a + b = 2b + a không là hằng đẳng thức vì khi ta thay a = 1, b = 5 thì hai vế của đẳng thức không bằng nhau.
Bài 2. Thay dấu ? bằng biểu thức thích hợp.
a) (2x – y)(2x + y) = ? – y2;
b) (x + 5y)(x – 5y) = x2 – ? y2;
c) x2 + ? xy + 4y2 = (x + 2y)2;
d) (? + 3)2 = 4x2 + ? + 9.
Hướng dẫn giải
a) (2x – y )( 2x + y) = (2x)2 – y2 = 4x2 – y2;
b) (x + 5y)(x – 5y) = x2 – (5y)2 = x2 – 25y2;
c) x2 + 4xy + 4y2 = x2 + 2 . x . 2y + (2y)2 = (x + 2y)2;
d) (2x + 3)2 = (2x)2 + 2 . 2x . 3 + 32 = 4x2 + 12x + 9.
Bài 3. Rút gọn biểu thức sau:
a) (2x – 1)2 – (2x + 1)2;
b) (3x + 2y)2 + (2x – 3y)2.
Hướng dẫn giải
a) (2x – 1)2 – (2x + 1)2
= [(2x – 1) – (2x + 1)][(2x – 1) + (2x + 1)]
= –2.4x
= –8x.
b) (3x + 2y)2 + (2x – 3y)2
= (3x)2 + 2.3x.2y + (2y)2 + (2x)2 – 2.2x.3y + (3y)2
= 9x2 + 12xy + 4y2 + 4x2 –12xy + 9y2
= 13x2 + 13y2.
Bài 4. Chứng minh rằng với mọi số tự nhiên ta có:
(n + 2)2 – n2 chia hết cho 4.
Hướng dẫn giải
Ta có: (n + 2)2 – n2 = n2 + 4n + 4 – n2 = 4n + 4 = 4(n + 1)
Vì 4 ⁝ 4 suy ra 4(n + 1) ⁝ 4 với mọi số tự nhiên n.
Vậy (n + 2)2 – n2 chia hết cho 4 với mọi số tự nhiên n.
Bài 5. Khai triển:
a) (x + y2)3;
b)(
Hướng dẫn giải
a) (x + y2)3 = x3 + 3x2y2 + 3xy4 + y6;
b)
Bài 6. Viết các biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu.
a) 125 + 150x + 60x2 + 8x3;
b) 64x3 – 48x2 + 12x – 1.
Hướng dẫn giải
a) 125 + 150x + 60x2 + 8x3 = 53 + 3.2x.52 + 3.(2x)2.5 + (2x)3 = (5 + 2x)3
b) 64x3 – 48x2 + 12x – 1 = (4x)3 – 3.(4x)2.1 + 3.4x.(–1)2 – (1)3 = (4x – 1)3.
Bài 7. Tính nhanh giá trị biểu thức:
a) 125 + 75x + 15x2 + x3 tại x = 5;
b) x3 – 9x2 + 27x – 27 tại x = 7.
Hướng dẫn giải
a) 125 + 75x + 15x2 + x3 = (5 + x)3
Thay x = 5, ta được (5 + 5)3 = 103 = 1000.
b) x3 – 9x2 + 27x – 27 = (x – 3)3
Thay x = 7, ta được (7 – 3)3 = 43 = 64.
Bài 8. Rút gọn các biểu thức sau:
a) (x – y)3 + (x + y)3;
b) (3x + 4)3 + (3x – 4)3.
Hướng dẫn giải
a) (x – y)3 + (x + y)3
= x3 – 3x2y + 3xy2 – y3 + x3 + 3x2y + 3xy2 + y3
= 2x3 + 6xy2;
b) (3x + 4)3 + (3x – 4)3
= 27x3 + 108x2 + 144x + 64 + 27x3 – 108x2 + 144x – 64
= 54x3 + 288x.
Bài 9. Viết các biểu thức sau dưới dạng tổng hay hiệu hai lập phương:
a) (2x + 3y)(4x2 – 6xy + 9y2);
b) (5 – x)(25 + 5x + x2).
Hướng dẫn giải
a) (2x + 3y)(4x2 – 6xy + 9y2)
= (2x)3 + (3y)3
= 8x3 + 27y3;
b) (5 – x)(25 + 5x + x2)
= 53 – x3.
Bài 10. Thay ? bằng biểu thức thích hợp.
a) 27x3 + 343 = (3x + 7)(9x2 – ? + 49);
b) 729 – 8x3 = (? + 18x + 4x2)(? – 2x).
Hướng dẫn giải
a) 27x3 + 343 = (3x + 7)(9x2 – 21x + 49);
b) 729 – 8x3 = (81 + 18x + 4x2)(9 – 2x).
Bài 11. Rút gọn biểu thức sau:
(2x – 5)(4x2 + 10x + 25) + (2x + 5)(4x2 – 10x + 25).
Hướng dẫn giải
(2x – 5)(4x2 + 10x + 25) + (2x + 5)(4x2 – 10x + 25)
= 8x3 – 125 + 8x3 + 125
= 16x3.
Bài 12.Viết các biểu thức sau thành đa thức
a) (3x + 7y)2;
b) (x – 5y)2;
c) (x – 3y)(x + 3y);
d) (2a – b)(4a2 + 2ab + b2);
e) (a – 2)(a2 + 4)(a + 2);
f) (a + 5b)(a2 + 5ab + 25b2);
g) (–x + y)3;
h) (–x – xy)3.
Hướng dẫn giải
a) (3x + 7y)2
= (3x)2 + 2 . 3x . 7y + (7y)2
= 9x2 + 42xy + 49y2;
b) (x – 5y)2
= x2 – 2 . x . 5 y + (5y)2
= x2 – 10xy + 25y2;
c) (x – 3y)(x + 3y)
= x2 – (3y)2
= x2 – 9y2.
d) (2a – b)(4a2 + 2ab + b2)
= (2a – b)[(2a)2 + 2a . b + b2]
= (2a – b)3;
e) (a – 2)(a2 + 4)(a + 2)
= [(a – 2)(a + 2)](a2 + 4)
= (a2 – 4)(a2 + 4)
= (a2)2 – 42
= a4 – 16;
f) (a + 5b)(a2 + 5ab + 25b2)
= (a + 5b)[a2 + a . 5b + (5b)2]
= (a + 5b)3.
g) (–x + y)3
= (–x)3 + 3.(–x)2y + 3(–x).y2 + y3
= –x3 + 3x2y – 3xy2 + y3.
h) (–x – xy)3
= (–x)3 – 3.(–x)2xy + 3.(–x).(xy)2 – (xy)3
= –x3 – 3x3y – 3x3y2 – x3y3.
Bài 13.Viết các biểu thức sau thành bình phương hoặc lập phương của một tổng hay một hiệu:
a) 9x2 + 6x + 1;
b)
c) x3 – 3x2 + 3x – 1;
d) x3 + 9x2y + 27xy2 + 27y3.
Hướng dẫn giải
a) 9x2 + 6x + 1
= (3x)2 + 2 . 3x . 1 + 12
= (3x + 1)2;
c) x3 – 3x2 + 3x – 1
= (x – 1)3;
d) x3 + 9x2y + 27xy2 + 27y3
= x3 + 3.x2.3y + 3.x.(3y)2 + (3y)3
= (x + 3y)3.
Bài 14.Tính nhanh:
a) 982;
b) 45 . 55;
c) 672 – 332.
Hướng dẫn giải
a) 982
= (100 – 2)2
= 1002 – 2 . 100 . 2 + 22
= 10 000 – 400 + 4
= 9 604;
b) 45 . 55
= (50 – 5)(50 + 5)
= 502 – 52
= 2 500 – 25
= 2 475;
c) 672 – 332
= (67 – 33)(67 + 33)
= 34 . 100
= 3 400.
Bài 15.Cho x + y = 3, xy = 10. Tính:
a) A = x3 + y3;
b) B = (x – y)2.
Hướng dẫn giải
a) A = x3 + y3
= (x + y)(x2 – xy + y2)
= (x + y)(x2 + 2xy + y2 – 3xy)
= (x + y)[(x + y)2 – 3xy]
Thay x + y = 3, xy = 10 vào biểu thức A ta có
A = 3 . (32 – 3 . 10) = 3 . (9 – 30) = 3 . (–21) = –63.
b) B = (x – y)2
= x2 – 2xy + y2
= x2 + 2xy + y2 – 4xy
= (x + y)2 – 4xy
Thay x + y = 3, xy = 10 vào biểu thức B ta có
B = 32 – 4 . 10 = 9 – 40 = –31.
Bài 16.Cho hình lập phương có cạnh bằng 3 cm. Thể tích hình lập phương sẽ tăng bao nhiêu nếu các cạnh đều tăng a cm?
Hướng dẫn giải
Thể tích hình lập phương là
V = 3 . 3 . 3 = 27 (cm3)
Khi các cạnh đều tăng thêm a cm thì độ dài các cạnh của hình lập phương là3 + a (cm)
Thể tích hình lập phương mới là
V = (3 + a)(3 + a)(3 + a)
= (3 + a)3
= 33 + 3 . 32 . a + 3 . 3 . a2 + a3
= a3 + 9a2 + 27a + 27 (cm3)
Thể tích hình lập phương sẽ tăng thêm là
a3 + 9a2 + 27a + 27 – 27 = a3 + 9a2 + 27a (cm3)
Vậy thể tích hình lập phương sẽ tăng thêm a3 + 9a2 + 27a cm3.
Bài 17. Viết mỗi biểu thức sau về dạng bình phương của một tổng hoặc một hiệu:
a) 4x2 + 4x + 1;
b) y2 – 6y + 9.
Hướng dẫn giải
a) 4x2 + 4x + 1 = (2x)2 + 2. 2x . 1 + 12
= (2x + 1)2
b) y2 – 6y + 9 = y2 – 2 . y . 3 + 32 = (y – 3)2
Bài 18. Viết18ỗi biểu thức sau về dạng lập phương của một tổng hoặc một hiệu:
a) b3 + 12b2 + 48b + 64;
b) x3 – 9x2 + 27x – 27.
Hướng dẫn giải
a) b3 + 12b2 + 48b + 64
= b3 + 3 . b2 . 4 + 3 . b . 42 + 43
= (b + 4)3.
b) x3 – 9x2 + 27x – 27
= x3 – 3 . x2 . 3 + 3 . x . 32 – 33
= (x – 3)3.
Bài 19. Chứng minh giá trị của biểu thức sau không phụ thuộc vào giá trị của biến x:
A = (3x – 1)2 + (3x + 1)2 – 2(3x – 1)(3x + 1).
Hướng dẫn giải
A = (3x – 1)2 + (3x + 1)2 – 2(3x – 1)(3x + 1)
= 9x2 – 6x + 1 + 9x2 + 6x + 1 – 2 . [(3x)2 – 12]
= 18x2 + 2 – 2 . (9x2 – 1)
= 18x2 + 2 – 18x2 – 2 = 0.
Vậy biểu thức A không phụ thuộc vào biến x (đpcm).
B. Lý thuyết Hằng đẳng thức đáng nhớ
1. Hằng đẳng thức
Nếu hai biểu thức P và Q nhận giá trị nhưu nhau với mọi giá trị của biến thì ta nói P = Q là một đồng nhất thức hay một hằng đẳng thức
Ví dụ: Đẳng thức 3(x + y) = 3x + 3y là một hằng đẳng thức
2. Hằng đẳng thức đáng nhớ
2.1. Bình phương của một tổng, hiệu
Với hai biểu thức A, B tùy ý, ta có:
(A + B)2 = A2 + 2AB + B2
(A – B)2 = A2 – 2AB + B2
Ví dụ:
• (x + 2)2 = x2 + 2 . x . 2 + 22 = x2 + 4x + 4;
• (x – 2)2 = x2 – 2 . x . 2 + 22 = x2 – 4x + 4.
2.2. Hiệu hai bình phương
Với hai biểu thức A, B tùy ý, ta có:
A2 – B2 = (A – B)(A + B)
Ví dụ: x2 – 36 = ( x – 6)(x + 6)
2.3. Lập phương của một tổng, một hiệu
Với hai biểu thức A, B tùy ý, ta có:
(A + B)3 = A3 + 3A2B + 3AB2 + B3
(A – B)2 = A3 – 3A2B + 3AB2 – B3
Ví dụ:
(x + 1)3 = x3 + 3 . x2 . 1 + 3 . x . 12 + 13
= x3 + 3x2 + 3x + 1
(x – 2)3 = x3 – 3 . x2 . 2 + 3 . x . 22 – 23
= x3 – 6x2 + 12x – 8
2.4. Tổng, hiệu hai lập phương
A3 + B3 = (A + B)(A2 – AB + B2);
A3 – B3 = (A – B)(A2 + AB + B2).
Ví dụ:
• 8 + x3 = 23 + x3 = (2 + x)(22 – 2 . x + x2)
= (2 + x)(4 – 2x + x2).
• 8x3 – y3 = (2x)3 – y3 = (2x – y)[(2x)2 + 2x . y + y2]
= (2x – y)(4x2 + 2xy + y2).