Lý thuyết Toán lớp 7 Bài 2: Tập hợp R các số thực
A. Lý thuyết Tập hợp R các số thực
1. Tập hợp số thực
1.1 Số thực
– Số hữu tỉ và số vô tỉ được gọi chung là số thực.
– Tập hợp các số thực được kí hiệu là ℝ.
Ví dụ: Các số 1,2 ; ; ; … là các số thực.
1.2 Biểu diễn thập phân của số thực
– Mỗi số thực là số hữu tỉ hoặc số vô tỉ. Vì thế, mỗi số thực đều biểu diễn được dưới dạng số thập phân hữu hạn hoặc vô hạn. Ta có sơ đồ sau:
2. Biểu diễn số thực trên trục số
Tương tự như đối với số hữu tỉ, ta có thể biểu diễn mọi số thực trên trục số, khi đó điểm biểu diễn số thực x được gọi là điểm x.
Ví dụ: Biểu diễn các số thực sau trên trục số:
a) và 2;
b) .
Hướng dẫn giải
a) Số và 2 là hai số hữu tỉ, vì thế để biểu diễn hai số này trên trục số ta thực hiện như cách biểu diễn một số hữu tỉ trên trục số.
b) Số là một số vô tỉ vì vậy để biểu diễn số trên trục số ta làm như sau:
+ Vẽ một hình vuông với một cạnh là đoạn thẳng có hai đầu mút là điểm gốc 0 và điểm 1. Khi đó, đường chéo của hình vuông có độ dài cạnh bằng .
+ Vẽ một phần đường tròn tâm là điểm gốc 0, bán kính là , cắt trục số tại điểm A nằm bên phải gốc 0. Ta có OA = và A là điểm biểu diễn .
Nhận xét:
– Không phải mỗi điểm trên trục số đều biểu diễn một số hữu tỉ. Vậy các điểm biểu diễn số hữu tỉ không lấp đầy trục số.
– Mỗi số thực được biểu diễn bởi một điểm trên trục số; Ngược lại, mỗi điểm trên trục số đều biểu diễn một số thực.
Vậy trục số còn được gọi là trục số thực.
3. Số đối của một số thực
– Trên trục số, hai số thực (phân biệt) có điểm biểu diễn nằm về hai phía của điểm gốc 0 và cách đều điểm gốc 0 được gọi là hai số đối nhau.
– Số đối của số thực a kí hiệu là – a.
– Số đối của số 0 là 0.
Nhận xét: Số đối của – a là số a, tức là –(–a) = a.
Ví dụ:
Số đối của số thực là số thực .
4. So sánh các số thực
4.1 So sánh hai số thực
Cũng như số hữu tỉ, trong hai số thực khác nhau luôn có một số nhỏ hơn số kia.
– Nếu số thực a nhỏ hơn số thực b thì ta biết a < b hay b > a.
– Số thực lớn hơn 0 gọi là số thực dương.
– Số thực nhỏ hơn 0 gọi là số thực âm.
– Số 0 không phải là số thực dương cũng không phải số thực âm.
– Nếu a < b và b < c thì a < c.
4.2 Cách so sánh hai số thực
– Ta có thể so sánh hai số thực bằng cách biểu diễn thập phân mỗi số thực đó rồi so sánh hai số thập phân đó.
– Việc biểu diễn một số thực dưới dạng số thập phân (hữu hạn hoặc vô hạn) thường là phức tạp. Trong một số trường hợp ta dùng quy tắc: Với a, b là hai số thực dương, nếu a > b thì .
Ví dụ: So sánh các số thực sau:
a) –1,(27) và –1,272;
b) và .
Hướng dẫn giải
a) Ta viết –1,(27) = –1,27272727….. sau đó ta so sánh với –1,272.
Hai số –1,27272727… và –1,2720 có phần nguyên và đến hàng phần nghìn giống nhau, cặp chữ số khác nhau đầu tiên bắt đầu từ hàng phần chục nghìn.
Do 7 > 0 nên 1,27272727…..> 1,2720, suy ra –1,27272727…..< –1,2720.
Vậy –1,(27) < –1,272.
b) Ta có: 0 < 7 < 8 nên < .
4.3 Minh họa trên trục số
Giả sử hai điểm x, y lần lượt biểu diễn hai số thực x, y trên trục số nằm ngang. Ta có nhận xét sau :
– Nếu x < y hay y > x thì điểm x nằm bên trái điểm y;
– Ngược lại nếu điểm x nằm bên trái điểm y thì x < y hay y > x.
Đối với hai điểm x, y lần lượt biểu diễn hai số thực x, y trên trục số thẳng đứng, ta cũng có nhận xét sau :
– Nếu x < y hay y > x thì điểm x nằm phía dưới điểm y;
– Ngược lại, nếu điểm x nằm phía dưới điểm y thì x < y hay y > x.
Ví dụ:
+ Vì < –1 nên trên trục số nằm ngang, điểm nằm bên trái điểm –1.
+ Điểm nằm bên trái điểm , vì vậy < .
B. Bài tập tự luyện
B.1 Bài tập tự luận
Bài 1. So sánh
a) và 2,142;
b) 3 và .
Hướng dẫn giải
a) Ta viết .Và so sánh với số 2,1420
Ta thấy kể từ trái sang phải, cặp chữ số cùng hàng đầu tiên khác nhau là cặp chữ số ở vị trí hàng phần chục nghìn.
Do 8 > 0 nên 2,142857142857…> 2,1420. Vậy > 2,142.
b) Ta có 3 > 0 và 32 = 9 nên . Để so sánh 3 và ta sẽ so sánh và .
Ta có 9 > 8 > 0 nên > . Suy ra 3 > .
Bài 2. Tìm số đối của mỗi số sau: ; 1,25 ; ; .
Hướng dẫn giải
Số đối của số thực là: .
Số đối của số thực 1,25 là –1,25.
Số đối của là .
Số đối của số thực là .
B.2 Bài tập trắc nghiệm
Câu 1. Cho các phát biểu sau:
(I) Số thực dương lớn hơn số thực âm.
(II) Số 0 là số thực dương.
(III) Số thực dương là số tự nhiên.
(IV) Số nguyên âm là số thực.
Số phát biểu sai là:
A. 1;
B. 2;
C. 3;
D. 4.
Hướng dẫn giải
Đáp án đúng là: B.
(I) Số thực dương lớn hơn số thực âm. Đây là phát biểu đúng.
(II) Số 0 là số thực dương. Đây là phát biểu sai vì số 0 không là số thực dương cũng không là số thực âm.
(III) Số thực dương là số tự nhiên. Đây là phát biểu sai vì số thực dương có cả số hữu tỉ được viết dưới dạng số thập phân nhưng đây không phải là số tự nhiên.
(IV) Số nguyên âm là số thực. Đây là phát biểu đúng.
Vậy có hai phát biểu sai là (II) và (III).
Câu 2. Trên trục số nằm ngang, điểm M và N lần lượt biểu biễn hai số thực m và n. Nếu m < n thì:
A. Điểm M nằm bên trái điểm N;
B. Điểm M nằm bên phải điểm N;
C. Điểm M nằm phía dưới điểm N;
D. Điểm M nằm phía trên điểm N.
Hướng dẫn giải
Đáp án đúng là: A.
Trên trục số nằm ngang, điểm M và N lần lượt biểu biễn hai số thực m và n.
Nếu m < n thì điểm M nằm bên trái điểm N.
Câu 3. Sắp xếp các số theo thứ tự tăng dần là:
A. ;
B.
C.
D.
Hướng dẫn giải
Đáp án đúng là: C.
Ta chia các số thành hai nhóm:
Nhóm 1: gồm các số thực âm .
Nhóm 2: gồm các số thực dương 0,5 và 2,1.
+) Ta so sánh nhóm 1: .
Có nên
Ta xét hai số 1,4142135…và 1 thì có 1,4142135… > 1
Nên –1,4142135… < –1.
Do đó .
+) Ta so sánh nhóm 2: gồm hai số 0,5 và 2,1.
Kể từ trái sang phải, cặp chữ số cùng hàng đầu tiên khác nhau là cặp chữ số ở phần nguyên. Do 0 < 2 nên 0,5 < 2,1.
+) Nhóm 1 gồm các số thực âm, nhóm 2 gồm các số thực dương mà số thực dương luôn lớn hơn số thực âm.
Do đó ta có < 0,5 < 2,1.
Vậy sắp xếp theo thứ tự tăng dần ta có:
====== ****&**** =====