Giải bài tập Toán lớp 7 Bài 3: Tam giác cân
Hoạt động khởi động
Giải Toán 7 trang 59 Tập 2
Khởi động trang 59 Toán lớp 7 Tập 2: Em hãy đo rồi so sánh độ dài hai cạnh AB và AC của tam giác ABC có trong hình di tích ga xe lửa Đà Lạt dưới đây.
Lời giải:
Thực hiện đo ta thu được AB = 1 cm, AC = 1 cm nên AB = AC.
1. Tam giác cân
Khám phá 1 trang 59 Toán lớp 7 Tập 2: Gấp đôi một tờ giấy hình chữ nhật ABCD theo đường gấp MS. Cắt hình gấp được theo đường chéo AS rồi trải phẳng hình cắt được ra ta có tam giác SAB (Hình 1). Em hãy so sánh hai cạnh SA và SB của tam giác này.
Lời giải:
Thực hiện theo hướng dẫn và đo, ta thu được SA = SB.
Giải Toán 7 trang 60 Tập 2
Thực hành 1 trang 60 Toán lớp 7 Tập 2: Tìm các tam giác cân trong Hình 4. Kể tên các cạnh bên, cạnh đáy, góc ở đỉnh, góc ở đáy của mỗi tam giác cân đó.
Lời giải:
Ta có MN = ME + EN = 1 + 1 = 2 cm; MP = MF + FP = 1 + 1 = 2 cm.
Tam giác MEF có ME = MF = 1 cm nên tam giác MEF cân tại M.
Tam giác MEF cân tại M nên ME và MF là cạnh bên, EF là cạnh đáy, là góc ở đỉnh, >và là góc ở đáy.
Tam giác MNP có MN = MP = 2 cm nên tam giác MNP cân tại M.
Tam giác MNP cân tại M nên MN và MP là cạnh bên, NP là cạnh đáy, là góc ở đỉnh, và là góc ở đáy.
Tam giác MPH có MP = MH = 2 cm nên tam giác MPH cân tại M.
Tam giác MPH cân tại M nên MP và MH là cạnh bên, PH là cạnh đáy, là góc ở đỉnh, và là góc ở đáy.
2. Tính chất của tam giác cân
Khám phá 2 trang 60 Toán lớp 7 Tập 2: Cho tam giác ABC cân tại A (Hình 5). Gọi M là trung điểm cạnh BC. Nối A với M.
Em hãy làm theo gợi ý sau để chứng minh .
Xét và có:
AB = ? (?)
MB = MC (?)
AM là cạnh ?
Vậy AMB = AMC (c.c.c).
Suy ra .
Lời giải:
Xét AMB và AMC có:
AB = AC (do ABC cân tại A)
MB = MC (do M là trung điểm của BC)
AM là cạnh chung
Vậy AMB = AMC (c.c.c).
Suy ra .
Giải Toán 7 trang 61 Tập 2
Thực hành 2 trang 61 Toán lớp 7 Tập 2: Tìm số đo các góc chưa biết của mỗi tam giác trong Hình 7.
Lời giải:
Tam giác MNP có MN = MP nên tam giác MNP cân tại M.
Do đó .
Trong tam giác MNP: .
Tam giác EFH có EF = EH nên tam giác EFH cân tại E.
Do đó .
Trong tam giác EFH: .
Suy ra .
Do đó .
Vậy = 40°; = 70°; = 55°.
Vận dụng 1 trang 61 Toán lớp 7 Tập 2: Trong hình mái nhà ở Hình 8, tính góc B và góc C, biết .
Lời giải:
Tam giác ABC có AB = AC nên tam giác ABC cân tại A.
Do đó .
Trong tam giác ABC: .
Suy ra .
Do đó .
Khám phá 3 trang 61 Toán lớp 7 Tập 2: Cho tam giác ABC có . Vẽ đường thẳng đi qua điểm B, vuông góc với AC và cắt AC tại điểm H (Hình 9). Em hãy làm theo gợi ý sau để chứng minh BA = BC.
Xét và cùng vuông tại H, ta có:
BH là cạnh góc vuông ?;
suy ra (?).
Vậy AHB = CHB. Suy ra BA = BC.
Lời giải:
Xét và cùng vuông tại H, ta có:
BH là cạnh góc vuông chung;
suy ra (do và ).
Vậy . Suy ra BA = BC.
Giải Toán 7 trang 62 Tập 2
Thực hành 3 trang 62 Toán lớp 7 Tập 2: Tìm các tam giác cân trong Hình 11 và đánh dấu các cạnh bằng nhau.
Lời giải:
Tam giác ABC có nên tam giác ABC cân tại A.
Do đó AB = AC.
Tam giác MNP vuông tại N nên (trong tam giác vuông, tổng hai góc nhọn bằng ).
Tam giác MNP có nên tam giác MNP cân tại N.
Do đó NM = NP.
Tam giác EFG có , , là góc tù nên tam giác EFG không có hai góc nào bằng nhau.
Do đó tam giác EFG không phải tam giác cân.
Ta có hình vẽ sau:
Vận dụng 2 trang 62 Toán lớp 7 Tập 2: Cho tam giác ABC cân tại A có góc B bằng 60°.
Chứng minh rằng tam giác ABC đều.
Lời giải:
Tam giác ABC cân tại A nên AB = AC và .
Tam giác ABC có: .
Tam giác ABC có nên tam giác ABC cân tại C.
Do đó CA = CB.
Mà AB = AC nên AB = AC = BC.
Vậy tam giác ABC là tam giác đều.
Bài tập (trang 62, 63)
Bài 1 trang 62 Toán lớp 7 Tập 2: Tìm các tam giác cân và tam giác đều trong mỗi hình sau (Hình 13). Giải thích.
Lời giải:
+) Xét Hình 13a:
có AM = MC nên cân tại M.
có AB = AM = BM nên đều.
+) Xét Hình 13b:
có DE = DH nên cân tại D.
có GE = GF nên cân tại G.
có EH = EF nên cân tại E.
Do đó các tam giác cân: , , .
có DE = EG = DG nên đều.
+) Xét Hình 13c:
có EG = EH nên cân tại E.
có IG = IH nên cân tại I.
cân có nên đều.
+) Xét Hình 13d:
Trong tam giác MBC có: .
Tam giác MBC có nên tam giác MBC cân tại C.
Bài 2 trang 62 Toán lớp 7 Tập 2: Cho Hình 14, biết ED = EF và EI là tia phân giác của .
Chứng minh rằng:
a) .
b) Tam giác DIF cân.
Lời giải:
a) Do EI là tia phân giác của nên .
Xét và có:
ED = EF (theo giả thiết).
(chứng minh trên).
EI chung.
Do đó (c.g.c).
b) Do (c.g.c) nên ID = IF (2 cạnh tương ứng).
Tam giác DIF có ID = IF nên tam giác DIF cân tại I.
Giải Toán 7 trang 63 Tập 2
Bài 3 trang 63 Toán lớp 7 Tập 2: Cho tam giác ABC cân tại A có (Hình 15).
a) Tính .
b) Gọi M, N lần lượt là trung điểm của AB, AC. Chứng minh rằng tam giác AMN cân.
c) Chứng minh rằng MN // BC.
Lời giải:
a) Tam giác ABC cân tại A nên .
Trong tam giác ABC có: .
Do đó .
Suy ra .
b) Do M là trung điểm của AB nên AM = AB.
Do N là trung điểm của AC nên AN = AC.
Do tam giác ABC cân tại A nên AB = AC.
Do đó AM = AN.
Tam giác AMN có AM = AN nên tam giác AMN cân tại A.
c) Do tam giác AMN cân tại A nên .
Trong tam giác AMN có: .
Do đó .
Suy ra .
Khi đó .
Mà hai góc này ở vị trí đồng vị nên MN // BC.
Bài 4 trang 63 Toán lớp 7 Tập 2: Cho tam giác ABC cân tại A (Hình 16). Tia phân giác của góc B cắt AC tại F, tia phân giác của góc C cắt AB tại E.
a) Chứng minh rằng .
b) Chứng minh rằng tam giác AEF cân.
c) Gọi I là giao điểm của BF và CE. Chứng minh rằng tam giác IBC và tam giác IEF là những tam giác cân.
Lời giải:
a) Do tam giác ABC cân tại A nên AB = AC và .
Do BF là tia phân giác của nên .
Do CE là tia phân giác của nên .
Do đó .
b) Xét và có:
(chứng minh trên).
AB = AC (chứng minh trên).
chung.
Do đó (g.c.g).
Suy ra AF = AE (2 cạnh tương ứng).
Tam giác AEF có AF = AE nên tam giác AEF cân tại A.
c) Ta có nên .
Tam giác IBC có nên tam giác IBC cân tại I.
Do đó IB = IC.
Xét và có:
(đối đỉnh).
IB = IC (chứng minh trên).
(chứng minh trên).
Do đó (g.c.g).
Suy ra IE = IF (2 cạnh tương ứng).
Tam giác IEF có IE = IF nên tam giác IEF cân tại I.
Bài 5 trang 63 Toán lớp 7 Tập 2: Phần thân của một móc treo quần áo có dạng hình tam giác cân (Hình 17a) được vẽ lại như Hình 17b. Cho biết AB = 20 cm; BC = 28 cm và . Tìm số đo các góc còn lại và chu vi của tam giác ABC.
Lời giải:
Dựa vào Hình 17b và tam giác ABC cân nên tam giác ABC cân tại A.
Do đó AB = AC và .
Khi đó AC = 20 cm và .
Chu vi của DABC bằng: 20 + 20 + 28 = 68 (cm).
Trong tam giác ABC có: .
Vậy ; ; chu vi của tam giác ABC bằng 68 cm.
Bài 6 trang 63 Toán lớp 7 Tập 2: Một khung cửa sổ hình tam giác có thiết kế như Hình 18a được vẽ lại như Hình 18b.
a) Cho biết . Tính số đo của .
b) Chứng minh MN // BC, MP // AC.
c) Chứng minh bốn tam giác cân AMN, MBP, PMN, NPC bằng nhau.
Lời giải:
a) có AM = AN nên cân tại A.
Khi đó .
Trong tam giác AMN có: .
Hay .
Do đó .
Tam giác ABC có AB = AM + MB, AC = AN + NC.
Mà AM = AN, MB = NC nên AB = AC.
Do đó cân tại A.
Khi đó .
Trong tam giác ABC có: .
Hay .
Do đó .
Tam giác MBP có MB = MP nên tam giác MBP cân tại M.
Do đó .
Trong tam giác MBP có: .
Hay .
Vậy ; ; .
b) Ta có , mà hai góc này ở vị trí đồng vị nên MN // BC.
, mà hai góc này ở vị trí đồng vị nên MP // AC.
c) Xét và có:
AM = MB (theo giả thiết).
(chứng minh trên).
AN = MP (theo giả thiết).
Do đó (c.g.c).
Suy ra MN = BP (2 cạnh tương ứng).
Xét và có:
MB = PM (theo giả thiết).
BP = MN (chứng minh trên).
MP = PN (theo giả thiết).
Do đó (c.c.c).
Do MP // AC nên (2 góc so le trong).
Xét và có:
PM = NP (theo giả thiết).
(chứng minh trên).
PN = NC (theo giả thiết).
Do đó (c.g.c).
Vậy bốn tam giác cân AMN, MBP, PMN, NPC bằng nhau.
====== ****&**** =====