Câu hỏi:
Cho hình vẽ như bên, biết . Cho AE = 10cm, AB = 15cm, BC = 12cm. Hãy tính độ dài các đoạn thẳng CD, BE, BD và ED (làm tròn đến chữ số thập phân thứ nhất)
Trả lời:
Ta có:⇒ Δ CDB ∼ Δ ABE ( g – g )⇒ CD/AB = BC/AEhay CD/15 = 10/12 ⇔ CD = (10.15)/12 ⇒ CD = 18 ( cm )Áp dụng định lý Py – ta – go vào tam giác vuông ABE có:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC và các đường cao BH, CK. Chứng minh Δ ABH ∼ Δ ACK.
Câu hỏi:
Cho tam giác ABC và các đường cao BH, CK. Chứng minh Δ ABH ∼ Δ ACK.
Trả lời:
Xét Δ ABH và Δ ACK có⇒ Δ ABH ∼ Δ ACK ( g – g )
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho Δ ABC,Δ A'B'C' có độ dài các cạnh như hình vẽ. Chứng minh Δ ABC ∼ Δ A'B'C'
Câu hỏi:
Cho Δ ABC,Δ A’B’C’ có độ dài các cạnh như hình vẽ. Chứng minh Δ ABC ∼ Δ A’B’C’
Trả lời:
Xét Δ ABC,Δ A’B’C’ có A’B’/AB = A’C’/AC = B’C’/BC = 2/4 = 2,5/5 = 3/6 = 1/2.⇒ Δ ABC ∼ Δ A’B’C’ ( c – c – c )
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC có AB = 15 cm, AC = 20 cm. Trên hai cạnh AB, AC lần lượt lấy 2 điểm E, D sao cho AD = 8cm, AE = 6cm. Chứng minh Δ AED ∼ Δ ABC.
Câu hỏi:
Cho tam giác ABC có AB = 15 cm, AC = 20 cm. Trên hai cạnh AB, AC lần lượt lấy 2 điểm E, D sao cho AD = 8cm, AE = 6cm. Chứng minh Δ AED ∼ Δ ABC.
Trả lời:
Xét Δ AED và Δ ABC có⇒ Δ AED ∼ Δ ABC ( c – g – c )
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD = 4cm. Chứng minh rằng: Δ BAD ∼ Δ DBC
Câu hỏi:
Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD = 4cm. Chứng minh rằng: Δ BAD ∼ Δ DBC
Trả lời:
Ta có:BA/BD = AD/BC = BD/CD = 1/2 ⇒ Δ BAD ∼ Δ DBC ( c – c – c )
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD = 4cm. Chứng minh rằng: ABCD là hình thang
Câu hỏi:
Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD = 4cm. Chứng minh rằng: ABCD là hình thang
Trả lời:
====== **** mời các bạn xem câu tiếp bên dưới **** =====