Câu hỏi:
Nhà bạn Mai ở vị trí M, nhà bạn Dung ở vị trí D (Hình 4.25), biết rằng tứ giác ABCD là hình vuông và M là trung điểm của AB. Hai bạn đi bộ với cùng một vận tốc trên con đường MD để đến điểm I. Bạn Mai xuất phát lúc 7h. Hỏi bạn Dung xuất phát lúc mấy giờ để gặp bạn Mai lúc 7h30 tại điểm I?
Trả lời:
Theo đề bài, ABCD là hình vuông nên AB = AD và AC là tia phân giác của .
Vì M là trung điểm của AB nên hay .
Vì AC là tia phân giác của hay AI là tia phân giác của , áp dụng tính chất đường phân giác trong tam giác ADM, ta có:
suy ra ID = 2IM.
Giả sử vận tốc đi bộ của bạn Mai và bạn Dung đều bằng nhau.
Theo đề bài, I là địa điểm gặp nhau nên bạn Mai đi theo quãng đường MI, bạn Dung đi theo quãng đường DI.
Vì quãng đường bạn Dung đi gấp 2 lần quãng đường bạn Mai đi và vận tốc đi bộ của hai bạn đều bằng nhau (giả sử) nên thời gian bạn Dung đi gấp 2 lần thời gian bạn Mai đi thì hai bạn mới gặp nhau tại địa điểm I.
Bạn Dung gặp bạn Mai lúc 7h30 nên thời gian bạn Mai đi trên quãng đường MI là:
7h30 – 7h = 30 phút.
Khi đó, thời gian bạn Dung đi là 1h. Do đó, bạn Dung xuất phát từ lúc:
7h30 – 1h = 6h30.
Vậy bạn Dung xuất phát lúc 6h30 để gặp bạn Mai lúc 7h30 tại điểm I.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong H.4.19, AD là đường phân giác của tam giác ABC. Hai tỉ số DBDC và ABAC có bằng nhau không?
Câu hỏi:
Trong H.4.19, AD là đường phân giác của tam giác ABC. Hai tỉ số và có bằng nhau không?
Trả lời:
Sau bài học này ta giải quyết được bài toán như sau:
Theo đề bài, AD là đường phân giác của tam giác ABC.
Áp dụng tính chất đường phân giác của tam giác, ta có: .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tia phân giác At của góc xAy (H.4.20). Nếu lấy điểm B trên tia Ax, điểm C trên tia Ay, ta được tam giác ABC. Giả sử tia phân giác At cắt BC tại điểm D.
Khi lấy B và C sao cho AB = AC (H.4.20a), hãy so sánh tỉ số DBDC và ABAC.
Câu hỏi:
Cho tia phân giác At của góc xAy (H.4.20). Nếu lấy điểm B trên tia Ax, điểm C trên tia Ay, ta được tam giác ABC. Giả sử tia phân giác At cắt BC tại điểm D.
Khi lấy B và C sao cho AB = AC (H.4.20a), hãy so sánh tỉ số và .Trả lời:
Theo đề bài, At là tia phân giác của góc xAy hay AD là tia phân giác của góc BAC.
Tam giác ABC cân tại A (vì AB = AC) có AD là tia phân giác của góc BAC nên AD cũng là đường trung tuyến của tam giác ABC.
Suy ra D là trung điểm của cạnh BC hay DB = DC nên .
Vì AB = AC nên .
Vậy khi lấy B và C sao cho AB = AC thì .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tia phân giác At của góc xAy (H.4.20). Nếu lấy điểm B trên tia Ax, điểm C trên tia Ay, ta được tam giác ABC. Giả sử tia phân giác At cắt BC tại điểm D
Khi lấy B và C sao cho AB = 2 cm và AC = 4 cm (H.4.20b), hãy dùng thước có vạch chia đến milimét để đo độ dài các đoạn thẳng DB, DC rồi so sánh hai tỉ số DBDC và ABAC.
Câu hỏi:
Cho tia phân giác At của góc xAy (H.4.20). Nếu lấy điểm B trên tia Ax, điểm C trên tia Ay, ta được tam giác ABC. Giả sử tia phân giác At cắt BC tại điểm D
Khi lấy B và C sao cho AB = 2 cm và AC = 4 cm (H.4.20b), hãy dùng thước có vạch chia đến milimét để đo độ dài các đoạn thẳng DB, DC rồi so sánh hai tỉ số và .Trả lời:
Dùng thước có vạch chia đến milimét để đo độ dài các đoạn thẳng DB, DC, ta được:
DB = 12 mm = 1,2 cm và DC = 24 mm = 2,4 cm.
Khi đó, .
Vậy khi lấy B và C sao cho AB = 2 cm và AC = 4 cm thì .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tính độ dài x trên Hình 4.23
Câu hỏi:
Tính độ dài x trên Hình 4.23
Trả lời:
Trong Hình 4.23 có nên EM là tia phân giác của .
Áp dụng tính chất đường phân giác của tam giác, ta có:
hay .
Suy ra (đvđd)
Vậy x = 7,2 (đvđd).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tính độ dài x trên Hình 4.24.
Câu hỏi:
Tính độ dài x trên Hình 4.24.
Trả lời:
Trong Hình 4.24 có nên PH là tia phân giác của .
Áp dụng tính chất đường phân giác của tam giác, ta có:
hay .
Suy ra (đvđd).
Vậy x = 8,5 (đvđd).====== **** mời các bạn xem câu tiếp bên dưới **** =====