Lý thuyết Toán lớp 11 Bài 19: Lôgarit
A. Lý thuyết Lôgarit
1. Khái niệm Lôgarit
Cho a là một số thực dương khác 1 và M là một số thực dương. Số thực để được gọi là lôgarit cơ số a của M và kí hiệu là .
.
Chú ý: Không có lôgarit của số âm và số 0. Cơ số của lôgarit phải dương và khác 1. Từ định nghĩa lôgarit, ta có các tính chất sau:
Với và là số thực tùy ý, ta có:
2. Tính chất của lôgarit
a) Quy tắc tính lôgarit
Giả sử a là số thực dương khác 1, M và N là các số thực dương, là số thực tùy ý. Khi đó:
b) Đổi cơ số của lôgarit
Với các cơ số lôgarit a và b bất kì () và M là số thực dương tùy ý, ta luôn có:
.
3. Lôgarit thập phân và lôgarit tự nhiên
a) Lôgarit thập phân
Lôgarit cơ số 10 của một số dương M gọi là lôgatit thập phân của M, kí hiệu là hoặc (đọc là lốc của M).
b) Số e và lôgarit tự nhiên
Lôgarit cơ số e của một số dương M gọi là lôgarit tự nhiên của M, kí hiệu là (đọc là lôgarit Nêpe của M).
Sơ đồ tu duy Lôgarit
B. Bài tập Lôgarit
Đang cập nhật …
Xem thêm các bài tóm tắt lý thuyết Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Lý thuyết Bài 18: Lũy thừa với số mũ thực
Lý thuyết Bài 19: Lôgarit
Lý thuyết Bài 20: Hàm số mũ và hàm số lôgarit
Lý thuyết Bài 21: Phương trình, bất phương trình mũ và lôgarit
Lý thuyết Bài 22: Hai đường thẳng vuông góc