Câu hỏi:
Hai thanh sắt có thể tích là 26 cm3 và 13 cm3. Thanh thứ nhất nặng hơn thanh thứ hai 56 g. Hỏi thanh thứ hai nặng có khối lượng bằng bao nhiêu?
A. 56 g;
B. 112 g;
Đáp án chính xác
C. 168 g;
D. 28 g.
Trả lời:
Đáp án đúng là: B
Gọi V1, V2 (cm3) lần lượt là thể tích của thanh thứ nhất và thanh thứ hai (V1, V2 > 0)
Gọi m1, m2 (g) lần lượt là khối lượng của thanh thứ nhất và thanh thứ hai (m1, m2 > 0).
Vì thể tích và khối lượng tỉ lệ thuận với nhau nên:
\[\frac{{{m_1}}}{{{m_2}}} = \frac{{26}}{{13}} = 2\]
Suy ra: m1 = 2m2.
Theo đề bài, thanh thứ nhất nặng hơn thanh thứ hai 56 g nên ta có:
m1 – m2 = 56.
Suy ra: 2m2 – m2 = 56.
Do đó: m2 = 56.
Vậy thanh thứ hai nặng 56 g.
Chọn đáp án B.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho biết x và y là hai đại lượng tỉ lệ thuận, khi x = 5 thì y = 25. Hệ số tỉ lệ k của x đối với y là:
Câu hỏi:
Cho biết x và y là hai đại lượng tỉ lệ thuận, khi x = 5 thì y = 25. Hệ số tỉ lệ k của x đối với y là:
A. 5;
B. 20;
C. 125;
D. \[\frac{1}{5}\].
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
Vì x tỉ lệ thuận với y theo hệ số tỉ lệ k nên ta có: x = ky.
Suy ra \(k = \frac{x}{y} = \frac{5}{{25}} = \frac{1}{5}\).
Vậy số tỉ lệ \(k = \frac{1}{5}\).
Vậy chọn đáp án D.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho biết x và y là hai đại lượng tỉ lệ thuận theo hệ số −6. Hãy biểu diễn y theo x.
Câu hỏi:
Cho biết x và y là hai đại lượng tỉ lệ thuận theo hệ số −6. Hãy biểu diễn y theo x.
A. y = 6x;
Đáp án chính xác
B. \[y = \frac{1}{6}x\];
C. y = −6x;
D. y = \[\frac{{ – 1}}{6}\]x.
Trả lời:
Đáp án đúng: D
Vì x tỉ lệ thuận với y theo hệ số tỉ lệ là −6 nên ta có x = −6y.
Suy ra \(y = \frac{x}{{ – 6}} = \frac{{ – 1}}{6}x\).
Vậy biểu diễn y theo x là \[y = \frac{{ – 1}}{6}x\].
Chọn đáp án D.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho đại lượng y tỉ lệ thuận với đại lượng x theo hệ số k (k ≠ 0). Gọi x1; x2 là các giá trị của đại lượng x và y1; y2 là các giá trị của đại lượng y tương ứng, biết x1 = 2,5 thì y1 = −0,5. Hãy tính x2 khi y2 = 5.
Câu hỏi:
Cho đại lượng y tỉ lệ thuận với đại lượng x theo hệ số k (k ≠ 0). Gọi x1; x2 là các giá trị của đại lượng x và y1; y2 là các giá trị của đại lượng y tương ứng, biết x1 = 2,5 thì y1 = −0,5. Hãy tính x2 khi y2 = 5.
A. x2 = −0,25;
B. x2 = 5;
C. x2 = −25;
Đáp án chính xác
D. x2 = 10.
Trả lời:
Đáp án đúng: C
Vì y tỉ lệ thuận với đại lượng x theo hệ số k nên ta có \(\frac{{{x_1}}}{{{x_2}}} = \frac{{{y_1}}}{{{y_2}}}\).
Thay số \(\frac{{2,5}}{{{x_2}}} = \frac{{ – 0,5}}{5}\).
Suy ra \({x_2} = \frac{{2,5.5}}{{ – 0,5}} = – 25\).
Vậy \({x_2}\) = −25.
Chọn đáp án C.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho biết x và y là hai đại lượng tỉ lệ thuận, khi x = 5 thì y = 25. Hệ số tỉ lệ k của y đối với x là:
Câu hỏi:
Cho biết x và y là hai đại lượng tỉ lệ thuận, khi x = 5 thì y = 25. Hệ số tỉ lệ k của y đối với x là:
A. 5;
Đáp án chính xác
B. 125;
C. \[\frac{1}{5}\];
D. 20.
Trả lời:
Đáp án đúng là: A
Vì y tỉ lệ thuận với x theo hệ số tỉ lệ k nên y = kx.
Suy ra \[k = \frac{y}{x} = \frac{{25}}{5} = 5\].
Vậy hệ số tỉ lệ k của y đối với x là 5.
Chọn đáp án A.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Một công nhân làm được 20 sản phẩm trong 40 phút. Trong 60 phút người đó làm được bao nhiêu sản phẩm cùng loại?
Câu hỏi:
Một công nhân làm được 20 sản phẩm trong 40 phút. Trong 60 phút người đó làm được bao nhiêu sản phẩm cùng loại?
A. 10 sản phẩm;
B. 30 sản phẩm;
Đáp án chính xác
C. 15 sản phẩm;
D. 35 sản phẩm.
Trả lời:
Đáp án đúng là: B
Gọi x (sản phẩm) là số sản phẩm người đó làm trong 60 phút (x Î ℕ*).
Vì số sản phẩm tỉ lệ thuận với thời gian làm sản phẩm nên ta có: \[\frac{x}{{20}}\]= \[\frac{{60}}{{40}}\].
Suy ra x = \[\frac{{60}}{{40}}.20 = 30\] (thỏa mãn điều kiện).
Vậy trong 60 phút người đó làm được 30 sản phẩm.
Chọn đáp án B.====== **** mời các bạn xem câu tiếp bên dưới **** =====