Câu hỏi:
Gia đình bác An sau khi xét nghiệm RT – PCR xác định 3 người dương tính với Covid – 19 và được điều trị tại nhà. Sau một vài ngày điều trị thì hiện tại chỉ còn 2 người dương tính, số viên vitamin C xủi còn lại đủ uống cho 3 người trong 4 ngày nữa. Hỏi số vitamin C xủi đó thì 2 người dương tính với Covid – 19 sẽ uống trong bao lâu (biết liều dùng của mỗi người là như nhau)?
A. 2 ngày;
B. 4 ngày;
C. 6 ngày;
Đáp án chính xác
D. 8 ngày.
Trả lời:
Đáp án đúng là: C.
Gọi x (ngày) là thời gian mà hai người dương tính uống hết số viên vitamin C xủi.
Vì số lượng viên vitamin không thay đổi và liều dùng của mỗi người là như nhau nên số người uống và thời gian uống là hai đại lượng tỉ lệ nghịch.
Do vậy ta có \(\frac{x}{4} = \frac{3}{2}\)
Suy ra 2x = 4.3 nên \(x = \frac{{4.3}}{2} = 6\) (thoả mãn) (ngày).
Vậy 2 người dương tính còn lại trong gia đình bác An sẽ uống hết số viên viatamin C xủi đó trong 6 ngày.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Nếu đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số tỉ lệ là 2022 thì đại lượng x tỉ lệ nghịch với đại lượng y theo hệ số tỉ lệ là:
Câu hỏi:
Nếu đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số tỉ lệ là 2022 thì đại lượng x tỉ lệ nghịch với đại lượng y theo hệ số tỉ lệ là:
A. \( – \frac{1}{{2022}}\);
B. \(\frac{1}{{2022}}\);
C. 2022;
Đáp án chính xác
D. −2022.
Trả lời:
Đáp án đúng là: C.
Vì đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số tỉ lệ là 2022 nên \(y = \frac{{2022}}{x}\)
Suy ra xy = 2022 do đó \(x = \frac{{2022}}{y}\)
Khi đó đại lượng x tỉ lệ nghịch với đại lượng y theo hệ số tỉ lệ là 2022.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho x và y là hai đại lượng tỉ lệ nghịch theo hệ số tỉ lệ a. Nếu x = −3 thì y = −12. Hệ số tỉ lệ a là:
Câu hỏi:
Cho x và y là hai đại lượng tỉ lệ nghịch theo hệ số tỉ lệ a. Nếu x = −3 thì y = −12. Hệ số tỉ lệ a là:
A. 4;
B. −4;
C. 36;
Đáp án chính xác
D. −36.
Trả lời:
Đáp án đúng là: C.
Vì x và y là hai đại lượng tỉ lệ nghịch theo hệ số tỉ lệ a nên ta có xy = a.
Khi x = −3 thì y = −12 nên (−3).(−12) = a
Do đó a = 36.
Vậy hai đại lượng x và y tỉ lệ nghịch với nhau theo hệ số tỉ lệ a = 36.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hai đại lượng x và y tỉ lệ nghịch với nhau và khi x = 6 thì y = 15. Khi x = 3 thì y có giá trị là:
Câu hỏi:
Cho hai đại lượng x và y tỉ lệ nghịch với nhau và khi x = 6 thì y = 15. Khi x = 3 thì y có giá trị là:
A. x = 9;
B. x = 12;
C. x = 27;
D. x = 30.
Đáp án chính xác
Trả lời:
Đáp án đúng là: D.
Gọi a là hệ số tỉ lệ của hai đại lượng tỉ lệ nghịch x và y.
Vì đại lượng y tỉ lệ nghịch với đại lượng x nên ta có \(y = \frac{a}{x}\)
Khi x = 6 thì y =15 nên \(15 = \frac{a}{6}\) do đó a = 15.6 = 90.
Suy ra \(y = \frac{{90}}{x}\).
Với x = 3 thì \(y = \frac{{90}}{3} = 30.\)
Vậy x = 30.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hai đại lượng nào sau đây không phải hai đại lượng tỉ lệ nghịch?
Câu hỏi:
Hai đại lượng nào sau đây không phải hai đại lượng tỉ lệ nghịch?
A. Vận tốc v và thời gian t khi đi trên cùng quãng đường 12 km;
B. Diện tích S và bán kính R của hình tròn;
Đáp án chính xác
C. Năng suất lao động N và thời gian t hoàn thành một lượng công việc a;
D. Một đội dùng x máy cày cùng năng suất để cày xong một cánh đồng hết y giờ.
Trả lời:
Đáp án đúng là: B.Vận tốc v và thời gian t khi đi trên cùng quãng đường 12 km nên ta có vt = 12 nên v và t là hai đại lượng tỉ lệ nghịch. Công thức tính diện tích hình tròn là S = π.R2 nên S và R không phải là hai đại lượng tỉ lệ nghịch.Năng suất lao động N và thời gian t hoàn thành một lượng công việc a nên ta có a = N.t nên N và t là hai đại lượng tỉ lệ nghịch. Một đội dùng x máy cày cùng năng suất để cày xong một cánh đồng hết y giờ nên các máy cày cày xong cánh đồng trong cùng một khoảng thời gian nên số máy cày x và thời gian cày y là hai đại lượng tỉ lệ nghịch. Vậy diện tích S và bán kính R của hình tròn không phải là hai đại lượng tỉ lệ nghịch.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Các giá trị tương ứng của hai đại lượng x và y được cho trong các bảng dưới đây, hỏi bảng nào thể hiện hai đại lượng x và y tỉ lệ thuận với nhau?
Câu hỏi:
Các giá trị tương ứng của hai đại lượng x và y được cho trong các bảng dưới đây, hỏi bảng nào thể hiện hai đại lượng x và y tỉ lệ thuận với nhau?
x
x1 = −2
x2 = 2
x3 = 6
y
y1 = 3
y2 = −3
y3 = −1
Bảng 1
x
x1 = 6
x2 = −2
x3 = 5
y
y1 = −6
y2 = 6
y3 = −15
Bảng 2
x
x1 = 2
x2 = −2
x3 = 5
y
y1 = −6
y2 = 6
y3 = 15
Bảng 3
x
x1 = −3
x2 = 2
x3 = 5
y
y1 = 9
y2 = −6
y3 = 15
Bảng 4
A. Bảng 1;
Đáp án chính xác
B. Bảng 2;
C. Bảng 3;
D. Bảng 4.
Trả lời:
Đáp án đúng là: A.
+) Trong bảng 1 ta có: x1.y1 = (−2).3 = −6; x2.y2 = 2.(−3) = −6; x3.y3 = 6.(−1) = −6;
Suy ra x1.y1 = x2.y2 = x3.y3 = −6.
Do đó hai đại lượng x và y tỉ lệ nghịch với nhau theo hệ số tỉ lệ là −6.
Vậy hai đại lượng x và y trong bảng 1 là hai đại lượng tỉ lệ thuận với nhau.
+) Trong bảng 2: x1.y1 = 6.(−6) = −36; x2.y2 = (−2).6 = −12; x3.y3 = 5.(−15) = −75;
Suy ra x1.y1 ≠ x2.y2 ≠ x3.y3
Do đó hai đại lượng x và y trong bảng 2 không là hai đại lượng tỉ lệ nghịch với nhau.
+) Trong bảng 3: x1.y1 = 2.(−6) = −12; x2.y2 = (−2).6 = −12; x3.y3 = 5.15 = 75;
Suy ra x1.y1 = x2.y2 ≠ x3.y3
Do đó hai đại lượng x và y trong bảng 2 không là hai đại lượng tỉ lệ nghịch với nhau.
+) Trong bảng 4: x1.y1 = (−3).9 = −27; x2.y2 = 2.(−6) = −12; x3.y3 = 5.15 = 75;
Suy ra x1.y1 ≠ x2.y2 ≠ x3.y3
Do đó hai đại lượng x và y trong bảng 2 không là hai đại lượng tỉ lệ nghịch với nhau.
Vậy hai đại lượng x và y trong bảng 1 là hai đại lượng tỉ lệ nghịch với nhau.====== **** mời các bạn xem câu tiếp bên dưới **** =====