Câu hỏi:
Cho hai điểm D và E nằm trên đường trung trực của đoạn thẳng AB. Cho = 20°. Số đo bằng :
A. 20°;
Đáp án chính xác
B. 30°;
C. 40°;
D. 10°.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Vì D nằm trên đường trung trực của AB nên DA = DB (tính chất của đường trung trực).
Vì E nằm trên đường trung trực của AB nên EA = EB (tính chất của đường trung trực).
Xét ∆DEA và ∆DEB có:
DA = DB (cmt);
EA = EB (cmt);
DE là cạnh chung.
Do đó ∆DEA = ∆DEB (c.c.c)
Suy ra = = 20°.
Vậy = 20°.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình vẽ như bên dưới. Khi đó:
Câu hỏi:
Cho hình vẽ như bên dưới. Khi đó:
A. AE là đường trung trực của BC;
Đáp án chính xác
B. D là trung điểm của AE;
C. D cách đều hai điểm A và E;
D. Tất cả đáp án trên đều sai
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Ta có: A cách đều hai điểm B và C (AB = AC).
E cách đều hai điểm B và C (EB = EC).
Do đó AE là đường trung trực của BC (tính chất của đường trung trực).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC nhọn có đường trung trực AD với D nằm trên BC. Khi đó:
Câu hỏi:
Cho tam giác ABC nhọn có đường trung trực AD với D nằm trên BC. Khi đó:
A. AD là tia phân giác góc ;
B. ∆ABC vuông cân tại A;
C. ∆ABC cân tại A;
D. A và B đều đúng.
Đáp án chính xác
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Xét ∆ABD và ∆ACD cùng vuông tại D có:
AD là cạnh chung;
BD = DC (D là trung điểm của BC).
Do đó ∆ABD = ∆ACD (hai cạnh góc vuông)
Suy ra AB = AC (hai cạnh tương ứng).
Do đó tam giác ABC cân tại A.
Ta có: = (∆ABD = ∆ACD).
Do đó AD là tia phân giác góc .
Do vậy cả 2 đáp án A và B đều đúng.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho ∆ABC có E và D lần lượt là trung điểm của AB và BC. Từ E và D kẻ đường trung trực cắt nhau tại O. Cho F là trung điểm của AC. Khi đó:
Câu hỏi:
Cho ∆ABC có E và D lần lượt là trung điểm của AB và BC. Từ E và D kẻ đường trung trực cắt nhau tại O. Cho F là trung điểm của AC. Khi đó:
A. OF là đường trung tuyến;
B. OF là đường trung trực của AC;
C. O là trực tâm của ∆ABC;
D. B và C đều đúng.
Đáp án chính xác
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Xét ∆ABC có:
OE là đường trung trực của AB (gt);
OD là đường trung trực của BC (gt);
OE và OD cắt nhau tại O.
Do đó O là trực tâm của ∆ABC.
Mà F là trung điểm của AC.
Nên OF là đường trung trực của AC.
Vậy đáp án B và C đều đúng.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong khu dân cư có ba điểm dân cư D, E, F người ta muốn xây một công viên H cách đều cả ba điểm dân cư (như hình vẽ).
Khi đó vị trí của H là:
Câu hỏi:
Trong khu dân cư có ba điểm dân cư D, E, F người ta muốn xây một công viên H cách đều cả ba điểm dân cư (như hình vẽ).
Khi đó vị trí của H là:A. Trung điểm của EF;
B. Trọng tâm của ∆DEF;
C. Giao của ba đường trung trực của ∆DEF;
Đáp án chính xác
D. A và C đều đúng.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Gọi ba điểm dân cư D, E, F là ba đỉnh của ∆DEF
Để công viên H cách đều ba điểm dân cư thì H phải cách đều ba đỉnh của ∆DEF.
Do đó H là giao điểm của ba đường trung trực trong ∆DEF.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC có E, F lần lượt là trung điểm của AB và BC. Cho O cách đều ba đỉnh của tam giác ABC. Khi đó:
Câu hỏi:
Cho tam giác ABC có E, F lần lượt là trung điểm của AB và BC. Cho O cách đều ba đỉnh của tam giác ABC. Khi đó:
A. OE vuông góc với AC;
B. OE vuông góc với AB;
Đáp án chính xác
C. OF vuông góc với AC;
D. OF vuông góc với AB.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Xét ∆ABC có điểm O cách đều ba đỉnh của tam giác ABC.
Do đó O là giao điểm của ba đường trung trực của ∆ABC.
Mà E là trung điểm của AB.
Nên OE là đường trung trực của AB.
Vậy OE vuông góc với AB tại E.====== **** mời các bạn xem câu tiếp bên dưới **** =====