Câu hỏi:
Trong mặt phẳng Oxy, cho ∆ABC có A(–4; 1), B(2; 4), C(2; –2). Tọa độ trọng tâm I của ∆ABC là:
A. I(1; 0);
B. I(0; 1);
Đáp án chính xác
C. I(–1; 0);
D. I(0; –1).
Trả lời:
Đáp án đúng là: B
Ta có I là trọng tâm của ∆ABC.
Do đó
Suy ra I(0; 1).
Vậy ta chọn phương án B.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho u→=(4;5) và v→=(3;a) . Tìm a để u→⊥v→
Câu hỏi:
Cho và . Tìm a để
A.
B.
Đáp án chính xác
C.
D.
Trả lời:
Đáp án đúng là: B
Ta có⇔ 4.3 + 5.a = 0
⇔ 12 + 5a = 0
⇔ 5a = –12Vậy ta chọn phương án B.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong mặt phẳng Oxy, cho ba điểm A(–1; 1), B(1; 3), C(5; 2). Tọa độ điểm D là đỉnh thứ tư của hình bình hành ABCD là:
Câu hỏi:
Trong mặt phẳng Oxy, cho ba điểm A(–1; 1), B(1; 3), C(5; 2). Tọa độ điểm D là đỉnh thứ tư của hình bình hành ABCD là:
A. (3; –2);
B. (5; 0);
C. (3; 0);
Đáp án chính xác
D. (5; –2).
Trả lời:
Đáp án đúng là: C
Với A(–1; 1), B(1; 3), C(5; 2) và D(xD; yD) ta có:
Tứ giác ABCD là hình bình hành ⇔
Ta suy ra tọa độ D(3; 0).
Vậy ta chọn phương án C.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng là:
Câu hỏi:
Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng là:
A. x ∈ ∅;
B. x = 1;
C. x = 11;
D. x = 11 hoặc x = 1.
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
Ta có
Theo đề, ta có AB =
⇔ x2 – 12x + 36 + 100 = 125
⇔ x2 – 12x + 11 = 0
⇔ x = 11 hoặc x = 1.
Vậy ta chọn phương án D.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho a→=(1;2), b→=(−2;3). Góc giữa hai vectơ u→=3a→+2b→và v→=a→−5b→ bằng
Câu hỏi:
Cho . Góc giữa hai vectơ và bằng
A. 45°;
B. 60°;
C. 90°;
D. 135°.
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
Với ta có:
+)
Suy ra
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong mặt phẳng Oxy, cho ∆ABC có A(–3; 0), B(3; 0) và C(2; 6). Gọi H(a; b) là trực tâm của ∆ABC. Giá trị của a + 6b bằng:
Câu hỏi:
Trong mặt phẳng Oxy, cho ∆ABC có A(–3; 0), B(3; 0) và C(2; 6). Gọi H(a; b) là trực tâm của ∆ABC. Giá trị của a + 6b bằng:
A. 3;
B. 6;
C. 7;
Đáp án chính xác
D. 5.
Trả lời:
+ Với A(–3; 0), B(3; 0), C(2; 6) và H(a; b) ta có:
+ Vì H là trực tâm của ∆ABC nên AH ⊥ BC.
Suy ra
Do đó
Khi đó ta có (a + 3).(–1) + 6b = 0
Vì vậy –a + 6b – 3 = 0 (1).
+ Vì H là trực tâm của ∆ABC nên BH ⊥ AC.
Suy ra
Do đó
Khi đó ta có (a – 3).5 + 6b = 0
Vì vậy 5a + 6b – 15 = 0 (2).
Từ (1) và (2), ta có hệ phương trình:
Vậy ta chọn phương án C.
====== **** mời các bạn xem câu tiếp bên dưới **** =====