Câu hỏi:
Miền không bị gạch trong mỗi Hình 12a, 12b là miền nghiệm của hệ bất phương trình nào cho ở dưới đây?
a)
b)
c)
Trả lời:
* Quan sát Hình 12a, đặt tên các đường thẳng như trên hình:
+ Đường thẳng d1 đi qua điểm (2; 0) và song song với trục tung, do đó phương trình đường thẳng d1: x = 2.
+ Đường thẳng d2 đi qua điểm (1; 0) và song song với trục hoành, do đó phương trình đường thẳng d2: y = 1.
+ Giả sử d3: y = ax + b (a ≠ 0)
Ta thấy đường thẳng d3 đi qua 2 điểm (0; 1) và (1; 0). Thay tọa độ của mỗi điểm vào phương trình ta được: b = 1 và a + b = 0. Suy ra a = – 1 (t/m) và b = 1.
Khi đó, d3: y = – x + 1.
Do đó, ta thấy phần không gạch sọc trên hình chính là miền nghiệm của hệ c)
* Quan sát Hình 12b, đặt tên các đường thẳng như hình:
+ Đường thẳng d4 đi qua điểm (– 3; 0) và song song với trục tung nên d4: x = – 3.
+ Đường thẳng d5 đi qua điểm (0; – 1) và song song với trục hoành nên d5: y = – 1.
+ Đường thẳng d6 đi qua hai điểm (2; 0) và (0; 2).
Giả sử d6: y = ax + b (a ≠ 0)
Thay tọa độ các điểm (2; 0) và (0; 2) vào phương trình đường thẳng ta tìm được a = – 1 (t/m) và b = 2.
Khi đó, d6: y = – x + 2 ⇔ x + y = 2.
Do đó, ta thấy phần không gạch sọc trên hình chính là miền nghiệm của hệ a)
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Quảng cáo sản phẩm trên truyền hình là một hoạt động quan trọng trong kinh doanh của các doanh nghiệp. Theo Thông báo số 10/2019, giá quảng cáo trên VTV1 là 30 triệu đồng cho 15 giây/1 lần quảng cáo vào khoảng 20h30; là 6 triệu đồng cho 15 giây/1 lần quảng cáo vào khung giờ 16h00 – 17h00. Một công ty dự định chi không quá 900 triệu đồng để quảng cáo trên VTV1 với yêu cầu quảng cáo về số lần phát như sau: ít nhất 10 lần quảng cáo vào khoảng 20h30 và không quá 50 lần quảng cáo vào khung giờ 16h00 – 17h00. Gọi x, y lần lượt là số lần phát quảng cáo vào khoảng 20h30 và vào khung giờ 16h00 – 17h00.
Trong toán học, các điều kiện ràng buộc đối với x và y để đáp ứng nhu cầu trên của công ty được thể hiện như thế nào?
Câu hỏi:
Quảng cáo sản phẩm trên truyền hình là một hoạt động quan trọng trong kinh doanh của các doanh nghiệp. Theo Thông báo số 10/2019, giá quảng cáo trên VTV1 là 30 triệu đồng cho 15 giây/1 lần quảng cáo vào khoảng 20h30; là 6 triệu đồng cho 15 giây/1 lần quảng cáo vào khung giờ 16h00 – 17h00. Một công ty dự định chi không quá 900 triệu đồng để quảng cáo trên VTV1 với yêu cầu quảng cáo về số lần phát như sau: ít nhất 10 lần quảng cáo vào khoảng 20h30 và không quá 50 lần quảng cáo vào khung giờ 16h00 – 17h00. Gọi x, y lần lượt là số lần phát quảng cáo vào khoảng 20h30 và vào khung giờ 16h00 – 17h00.
Trong toán học, các điều kiện ràng buộc đối với x và y để đáp ứng nhu cầu trên của công ty được thể hiện như thế nào?Trả lời:
Công ty yêu cầu quảng cáo với số lần phát như sau: ít nhất 10 lần quảng cáo vào khoảng 20h30 và không quá 50 lần quảng cáo vào khung giờ 16h00 – 17h00.
Gọi x, y lần lượt là số lần phát quảng cáo vào khoảng 20h30 và vào khung giờ 16h00 – 17h00.
Do đó: , x ≥ 10 và 0 ≤ y ≤ 50.
Mỗi lần quảng cáo vào khung giờ 20h30 có giá là 30 triệu đồng nên chi phí để phát x lần quảng cáo vào khung giờ này là 30x (triệu đồng).
Mỗi lần phát quảng cáo vào khung giờ 16h00 – 17h00 có giá là 6 triệu đồng nên chi phí để phát y lần quảng cáo vào khung giờ này là 6y (triệu đồng).
Tổng chi phí để phát x lần quảng cáo vào khoảng 20h30 và y lần quảng cáo vào khung giờ 16h00 – 17h00 là: 30x + 6y (triệu đồng).
Công ty dự định chi không quá 900 triệu đồng để quảng cáo nên 30x + 6y ≤ 900
⇔ 5x + y ≤ 150.
Vậy các điều kiện ràng buộc đối với x và y để đáp ứng nhu cầu của công ty là: x ≥ 10, 0 ≤ y ≤ 50, 5x + y ≤ 150, với .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hệ bất phương trình sau: x−y−2 2
a) Mỗi bất phương trình (1) và (2) có là bất phương trình bậc nhất hai ẩn không?
b) Chỉ ra một nghiệm chung của hai bất phương trình (1) và (2) trong hệ trên.
Câu hỏi:
Cho hệ bất phương trình sau:
a) Mỗi bất phương trình (1) và (2) có là bất phương trình bậc nhất hai ẩn không?
b) Chỉ ra một nghiệm chung của hai bất phương trình (1) và (2) trong hệ trên.Trả lời:
a) Bất phương trình (1) có dạng ax + by < c (a và b không đồng thời bằng 0, với a = 1, b = – 1, c = 3).
Bất phương trình (2) có dạng ax + by > c (a và b không đồng thời bằng 0, với a = 1, b = 2, c = – 2)
Vậy mỗi bất phương trình (1) và (2) đều là bất phương trình bậc nhất hai ẩn x và y.
b) Chọn x0 = 2, y0 = 1. Khi đó:
(1) ⇔ 2 – 1 < 3 ⇔ 1 < 3 (luôn đúng) nên (2; 1) là nghiệm của bất phương trình (1)
(2) ⇔ 2 + 2.1 > – 2 ⇔ 4 > – 2 (luôn đúng) nên (2; 1) là nghiệm của bất phương trình (2)
Vậy cặp số (2; 1) là một nghiệm chung của hai bất phương trình (1) và (2) trong hệ trên.
Chú ý: Ta có thể chọn cặp số khác thỏa mãn là nghiệm chung của hai bất phương trình (1) và (2), chẳng hạn (1; 0), (4; 2),…====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chỉ ra một nghiệm của hệ bất phương trình sau: 2x+y>0x−3y
Câu hỏi:
Chỉ ra một nghiệm của hệ bất phương trình sau:
Trả lời:
Chọn cặp số (1; 1)
Ta có: 2 . 1 + 1 = 2 + 1 = 3 > 0 nên (1; 1) là nghiệm của bất phương trình 2x + y > 0.
Lại có: 1 – 3 . 1 = 1 – 3 = – 2 < 6 nên (1; 1) là nghiệm của bất phương trình x – 3y < 6.
Ta cũng có: 1 – 1 = 0 > – 4 nên (1; 1) là nghiệm của bất phương trình x – y ≥ 4.
Do đó (1; 1) là nghiệm chung của ba bất phương trình trong hệ đã cho.
Vậy (1; 1) là một nghiệm của hệ bất phương trình đã cho.
Chú ý: Ta cũng có thể chỉ ra các nghiệm khác của bất phương trình, chẳng hạn (1; 2), (0; 1), …====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hệ bất phương trình sau: x−2y≥−27x−4y≤162x+y≥−4.
a) Trong cùng mặt phẳng tọa độ Oxy, biểu diễn miền nghiệm của mỗi bất phương trình trong hệ bất phương trình bằng cách gạch bỏ phần không thuộc miền nghiệm của nó.
b) Tìm miền nghiệm của hệ bất phương trình đã cho.
Câu hỏi:
Cho hệ bất phương trình sau:
a) Trong cùng mặt phẳng tọa độ Oxy, biểu diễn miền nghiệm của mỗi bất phương trình trong hệ bất phương trình bằng cách gạch bỏ phần không thuộc miền nghiệm của nó.
b) Tìm miền nghiệm của hệ bất phương trình đã cho.Trả lời:
a) Trong cùng một mặt phẳng tọa độ Oxy, vẽ ba đường thẳng:
d1: x – 2y = – 2;
d2: 7x – 4y = 16;
d3: 2x + y = – 4.
Đường thẳng d1 đi qua 2 điểm A(4; 3) và C(– 2; 0)
Đường thẳng d2 đi qua 2 điểm A(4; 3) và B(0; – 4)
Đường thẳng d3 đi qua hai điểm B(0; – 4) và C(– 2; 0)
Do tọa độ điểm O(0; 0) thỏa mãn các bất phương trình trong hệ đã cho nên miền nghiệm của từng bất phương trình trong hệ lần lượt là những nửa mặt phẳng không bị gạch chứa điểm O(0; 0) (kể cả đường thẳng tương ứng).
b) Phần không bị gạch (chứa điểm O(0; 0)) là miền nghiệm của hệ bất phương trình đã cho.
Cụ thể, miền nghiệm của hệ là tam giác ABC kể cả miền trong (còn gọi là miền tam giác ABC) với A(4; 3), B(0; – 4) và C(– 2; 0).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Biểu diễn miền nghiệm của hệ bất phương trình sau: 3x−y>–3−2x+3y−4.
Câu hỏi:
Biểu diễn miền nghiệm của hệ bất phương trình sau:
Trả lời:
Trên cùng một mặt phẳng tọa độ Oxy, vẽ 3 đường thẳng:
d1: 3x – y = – 3;
d2: – 2x + 3y = 6;
d3: 2x + y = – 4.
Gạch đi các phần không thuộc miền nghiệm của mỗi bất phương trình.
Miền nghiệm của hệ bất phương trình là phần mặt phẳng không bị gạch sọc không kể đường biên trong hình dưới.
====== **** mời các bạn xem câu tiếp bên dưới **** =====