Câu hỏi:
Cho A = {a; b; c}; B = {b; c; d}; C = {a; b; c; d; e}. Khẳng định nào sau đây sai
A. \(\left( {{\rm{A}} \cup {\rm{B}}} \right) \cap {\rm{C}} = \left( {{\rm{A}} \cap {\rm{B}}} \right) \cup {\rm{C}}\);
Đáp án chính xác
B. \({\rm{A}} \cup \left( {{\rm{B}} \cap {\rm{C}}} \right) = \left( {{\rm{A}} \cup {\rm{B}}} \right) \cap \left( {{\rm{A}} \cup {\rm{C}}} \right)\);
C. \({\rm{A}} \cup {\rm{(B}} \cap {\rm{C)}}\,{\rm{ = }}\,({\rm{A}} \cup {\rm{B)}} \cap {\rm{C}}\);
D. \({\rm{(A}} \cup {\rm{B)}} \cap {\rm{C}}\,{\rm{ = }}\,{\rm{(A}} \cup {\rm{B)}} \cap {\rm{(A}} \cup {\rm{C)}}\).
Trả lời:
Đáp án đúng là: A
– Đáp án A: Ta có \(A \cup B = {\rm{\{ }}a;b;c;d{\rm{\} }}\)\( \Rightarrow (A \cup B) \cap C = {\rm{\{ }}a;b;c;d{\rm{\} }}\)
\(A \cap B = {\rm{\{ }}b;c{\rm{\} }}\)\( \Rightarrow (A \cap B) \cup C = {\rm{\{ }}a;b;c;d;e{\rm{\} }}\)
Vậy \(\left( {{\rm{A}} \cup {\rm{B}}} \right) \cap {\rm{C}} \ne \left( {{\rm{A}} \cap {\rm{B}}} \right) \cup {\rm{C}}\)
Đáp án A sai.
– Đáp án B: Ta có \({\rm{B}} \cap {\rm{C}} = \left\{ {{\rm{b}};c;{\rm{d}}} \right\}\) \( \Rightarrow {\rm{A}} \cup \left( {{\rm{B}} \cap {\rm{C}}} \right) = \left\{ {{\rm{a}};{\rm{b}};{\rm{c}};{\rm{d}}} \right\}\);
\({\rm{A}} \cup {\rm{B}} = \left\{ {{\rm{a}};{\rm{b}};{\rm{c}};{\rm{d}}} \right\}\); \({\rm{A}} \cup {\rm{C}} = \left\{ {{\rm{a}};{\rm{b}};{\rm{c}};{\rm{d}};{\rm{e}}} \right\}\) \( \Rightarrow \left( {{\rm{A}} \cup {\rm{B}}} \right) \cap \left( {{\rm{A}} \cup {\rm{C}}} \right) = \left\{ {{\rm{a}};{\rm{b}};{\rm{c}};{\rm{d}}} \right\}\)
Vậy \({\rm{A}} \cup \left( {{\rm{B}} \cap {\rm{C}}} \right) = \left( {{\rm{A}} \cup {\rm{B}}} \right) \cap \left( {{\rm{A}} \cup {\rm{C}}} \right)\)
Đáp án B đúng.
– Đáp án C: Ta có \({\rm{B}} \cap {\rm{C}}\, = {\rm{\{ }}b;c;d{\rm{\} }}\)\( \Rightarrow {\rm{A}} \cup \left( {{\rm{B}} \cap {\rm{C}}} \right) = \left\{ {{\rm{a}};{\rm{b}};{\rm{c}};{\rm{d}}} \right\}\)
\(A \cup B = {\rm{\{ }}a;b;c;d{\rm{\} }}\)\( \Rightarrow ({\rm{A}} \cup B) \cap C = \left\{ {{\rm{a}};{\rm{b}};{\rm{c}};{\rm{d}}} \right\}\)
Vậy \({\rm{A}} \cup {\rm{(B}} \cap {\rm{C)}}\, = \,({\rm{A}} \cup {\rm{B)}} \cap {\rm{C}}\)
Đáp án C đúng.
– Đáp án D: Ta có \({\rm{A}} \cup {\rm{B = \{ }}a;b;c;d{\rm{\} }}\)\( \Rightarrow (A \cup B) \cap C = {\rm{\{ }}a;b;c;d{\rm{\} }}\)
\(\,{\rm{A}} \cup {\rm{B = \{ }}a;b;c;d{\rm{\} }}\);\(\,{\rm{A}} \cup C{\rm{ = \{ }}a;b;c;d;e{\rm{\} }}\)\( \Rightarrow (A \cup B) \cap (A \cup C) = {\rm{\{ }}a;b;c;d{\rm{\} }}\)
Vậy \({\rm{(A}} \cup {\rm{B)}} \cap {\rm{C}}\,{\rm{ = }}\,{\rm{(A}} \cup {\rm{B)}} \cap {\rm{(A}} \cup {\rm{C)}}\).
Đáp án D đúng.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Số tập con của tập A = {1; 2; 3} là
Câu hỏi:
Số tập con của tập A = {1; 2; 3} là
A. 8;
Đáp án chính xác
B. 6;
C. 5;
D. 7.
Trả lời:
Đáp án đúng là: A
Các tập con gồm {1}; {2}; {3}; {1; 2}; {1;3}; {2; 3}; {1; 2; 3}; \(\emptyset \).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hãy liệt kê các phần tử của tập hợp \(X = \,{\rm{\{ }}x \in \mathbb{R},\,{x^2} + x + 1 = 0\} \)
Câu hỏi:
Hãy liệt kê các phần tử của tập hợp \(X = \,{\rm{\{ }}x \in \mathbb{R},\,{x^2} + x + 1 = 0\} \)
A. X = \(\emptyset \);
Đáp án chính xác
B. X = {0};
C. X = 0;
D. X = {\(\emptyset \)}.
Trả lời:
Đáp án đúng là: A
Phương trình x2 + x + 1 = 0 vô nghiệm nên tập X không có phần tử nào.
Vậy tập X = \(\emptyset \).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Số tập con có 2 phần tử của tập M = {1; 2; 3; 4; 5; 6}
Câu hỏi:
Số tập con có 2 phần tử của tập M = {1; 2; 3; 4; 5; 6}
A. 15;
Đáp án chính xác
B. 16;
C. 18;
D. 22.
Trả lời:
Đáp án đúng là: A
Tập con có 2 phần tử của tập M gồm: {1; 2}; {1; 3}; {1; 4}; {1; 5}; {1;6}; {2; 3}; {2; 4}; {2; 5}; {2; 6}; {3; 4}; {3; 5}; {3; 6}; {4; 5}; {4; 6}; {5; 6}.
Vậy tập M có 15 tập con có 2 phần tử.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hai tập hợp A = {0; 2; 3; 5} và B = {2; 7}. Khi đó \({\rm{A}} \cap {\rm{B}}\)
Câu hỏi:
Cho hai tập hợp A = {0; 2; 3; 5} và B = {2; 7}. Khi đó \({\rm{A}} \cap {\rm{B}}\)
A. {2; 5};
B. {2};
Đáp án chính xác
C. \(\emptyset \);
D. {0; 2; 3; 5; 7}.
Trả lời:
Đáp án đúng là: B
Vì phần tử 2 vừa thuộc A vừa thuộc B nên \({\rm{A}} \cap {\rm{B}} = \left\{ 2 \right\}\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho A = {0; 1; 2; 3; 4}; B = {2; 3; 4; 5; 6}. Tìm tập \(\left( {{\rm{A}}\backslash {\rm{B}}} \right) \cup \left( {{\rm{B}}\backslash {\rm{A}}} \right)\)
Câu hỏi:
Cho A = {0; 1; 2; 3; 4}; B = {2; 3; 4; 5; 6}. Tìm tập \(\left( {{\rm{A}}\backslash {\rm{B}}} \right) \cup \left( {{\rm{B}}\backslash {\rm{A}}} \right)\)
A. {5; 6};
B. {1; 2};
C. {2; 3; 4};
D. {0; 1; 5; 6}.
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
Ta có tập hợp A\B là tập các phần tử thuộc tập A nhưng không thuộc tập B nên \(\left( {{\rm{A}}\backslash {\rm{B}}} \right) = {\rm{\{ 0;}}\,{\rm{1\} }}\).
Tập hợp B\A là tập các phần tử thuộc tập B nhưng không thuộc tập A nên \(\left( {{\rm{B}}\backslash {\rm{A}}} \right) = {\rm{\{ }}5;\,6\} \).
\( \Rightarrow \left( {{\rm{A}}\backslash {\rm{B}}} \right) \cup \left( {{\rm{B}}\backslash {\rm{A}}} \right) = \left\{ {0;\,1;\,5;\,6} \right\}\).====== **** mời các bạn xem câu tiếp bên dưới **** =====