Câu hỏi:
c) Phương trình vô nghiệm,
Trả lời:
c) +) Nếu m = 0 thì phương trình trở thành x + 10 = 0, có nghiệm x = –10. Do đó m = 0 không thỏa mãn yêu cầu.
+) Nếu m ≠ 0 thì phương trình vô nghiệm khi và chỉ khi:
∆ = (m + 1)2 – 4.m.( 3m + 10 ) < 0
⟺ m2 + 2m + 1 – 12m2 – 40m < 0
⟺ –11m2 – 38m +1 < 0
Tam thức bậc hai f (m) = –11m2 – 38m +1 có ∆m = (–38)2 – 4.( –11).1 = 1488 suy ra f(m) có hai nghiệm phân biệt:
m1 = và m2 = , a = – 11 < 0 nên f ( m ) < 0 khi và chỉ khi
m < hoặc m >
Vậy m < và m > thoả mãn yêu cầu đề bài.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- x = 2 là một nghiệm của bất phương trình nào sau đây?
a) x2−3x+1>0;
Câu hỏi:
x = 2 là một nghiệm của bất phương trình nào sau đây?
a)Trả lời:
a) Thay x = 2 vào bất phương trình ta được: 22 – 3.2 +1 = –1 < 0.
Vì vậy x = 2 không là nghiệm của bất phương trình====== **** mời các bạn xem câu tiếp bên dưới **** =====
- b) −4×2−3x+5≤0;
Câu hỏi:
b)
Trả lời:
b) Thay x = 2 vào bất phương trình ta được: –4.22 – 3.2 +5 = –17 < 0.
Vì vậy x = 2 là nghiệm của bất phương trình====== **** mời các bạn xem câu tiếp bên dưới **** =====
- c) 2×2−5x+2≤0
Câu hỏi:
c)
Trả lời:
c) Thay x = 2 vào bất phương trình ta được: 2.22 – 5.2 + 2 = 0 ≤ 0
Vì vậy x = 2 là nghiệm của bất phương trình====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Dựa vào đồ thị của hàm số bậc hai đã cho, hãy nêu tập nghiệm của các bất phương trình bậc hai tương ứng.
a) fx≥0
Câu hỏi:
Dựa vào đồ thị của hàm số bậc hai đã cho, hãy nêu tập nghiệm của các bất phương trình bậc hai tương ứng.
a)
Trả lời:
a)
Đồ thị hàm số bậc hai nằm phía trên trục hoành với ;
Đồ thị hàm số bậc hai cắt trục hoành tại hai điểm x = và x = 1.
Do đó f(x) ≥ 0 khi .
Vậy tập nghiệm của bất phương trình f(x) ≥ 0 là S = .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- b) fx<0
Câu hỏi:
b)
Trả lời:
b) Đồ thị hàm số bậc hai nằm phía trên trục hoành với mọi x ∈ ℝ hay f(x) > 0 với mọi x ∈ ℝ.
Do đó f(x) < 0 vô nghiệm.
Vậy tập nghiệm của bất phương trình f(x) < 0 là S = ∅.====== **** mời các bạn xem câu tiếp bên dưới **** =====