Câu hỏi:
b) CH vuông góc với AB.
Trả lời:
Vì H là trực tâm của tam giác ABC nên CH ⊥ AB. Do đó phát biểu b là đúng.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC có AB > AC > BC và H là trực tâm. Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) H là giao điểm ba đường trung trực của tam giác ABC.
Câu hỏi:
Cho tam giác ABC có AB > AC > BC và H là trực tâm. Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) H là giao điểm ba đường trung trực của tam giác ABC.Trả lời:
Vì H là trực tâm của tam giác ABC nên H là giao điểm của ba đường cao trong tam giác ABC.
Do đó phát biểu a là sai.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- c) AH vuông góc với BC.
Câu hỏi:
c) AH vuông góc với BC.
Trả lời:
Vì H là trực tâm của tam giác ABC nên AH ⊥ BC. Do đó phát biểu c là đúng.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC có AB > AC > BC và K là trực tâm. Trong các phát biểu sau, phát biểu nào đúng?
Câu hỏi:
Cho tam giác ABC có AB > AC > BC và K là trực tâm. Trong các phát biểu sau, phát biểu nào đúng?
a) K là giao điểm ba đường trung trực của tam giác ABC.
b) K là giao điểm ba đường cao của tam giác ABC.
Đáp án chính xác
c) K là giao điểm ba đường phân giác của tam giác ABC.
d) K là giao điểm ba đường trung tuyến của tam giác ABC.
Trả lời:
Vì K là trực tâm của tam giác ABC nên K là giao điểm của ba đường cao trong tam giác ABC.
Do đó phát biểu b là đúng.
Vậy ta chọn phát biểu b.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H (Hình 61). Tìm trực tâm của các tam giác HAB, HBC, HCA.
Câu hỏi:
Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H (Hình 61). Tìm trực tâm của các tam giác HAB, HBC, HCA.
Trả lời:
• Xét tam giác HAB có BD ⊥ AH, AE ⊥ BH, HF ⊥ AB và ba đường cao BD, AE, HF cắt nhau tại C.
Do đó C là trực tâm tam giác HAB.
• Xét tam giác HBC có HD ⊥ BC, BF ⊥ HC, CE ⊥ BH và ba đường cao HD, BF, CE cắt nhau tại A.
Do đó A là trực tâm tam giác HBC.
• Xét tam giác HCA có HE ⊥ AC, AF ⊥ HC, CD ⊥ AH và ba đường cao HE, AF, CD cắt nhau tại B.
Do đó B là trực tâm tam giác HCA.
Vậy trực tâm của các tam giác HAB, HBC, HCA tương ứng là C, A, B.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC có trực tâm H đồng thời cũng là điểm cách đều ba đỉnh của tam giác. Tính số đo các góc của tam giác ABC.
Câu hỏi:
Cho tam giác ABC có trực tâm H đồng thời cũng là điểm cách đều ba đỉnh của tam giác. Tính số đo các góc của tam giác ABC.
Trả lời:
Gọi M là giao điểm của AH và BC.
Vì H cách đều ba đỉnh của tam giác ABC nên HA = HB = HC.
Do HB = HC nên H nằm trên đường trung trực của đoạn thẳng BC.
Tam giác ABC có trực tâm H nên AH ⊥ BC tại M.
Do đó AH là đường trung trực của BC và M là trung điểm của BC.
Khi đó MB = MC.
Xét DABM và DACM có:
,
AM là cạnh chung,
MB = MC (chứng minh trên).
Do đó DABM = DACM (hai cạnh góc vuông)
Suy ra AB = AC (hai cạnh tương ứng).
Chứng minh tương tự ta cũng có: AB = BC.
Do đó AB = BC = AC nên tam giác ABC là tam giác đều.
Suy ra ba góc của tam giác ABC đều có số đo bằng 60°.
Vậy số đo các góc của tam giác ABC đều bằng 60°.====== **** mời các bạn xem câu tiếp bên dưới **** =====