Câu hỏi:
Với một bình rỗng có dung tích 2 l, một bạn học sinh thực hiện thí nghiệm theo các bước như sau:
Bước 1: Rót 1 l nước vào bình, rồi rót đi một nửa lượng nước trong bình.
Bước 2: Rót 1 l nước vào bình, rồi lại rót đi một nửa lượng nước trong bình.
Cứ như vậy, thực hiện các bước 3,4,…
Kí hiệu an là lượng nước có trong bình sau bước .
a) Tính a1, a2, a3. Từ đó dự đoán công thức tính an với n
b) Chứng minh công thức trên bằng phương pháp quy nạp toán học.
Trả lời:
Hướng dẫn giải
a) Sau bước 1 thì trong bình có 1/2 l nước, do đó a1 = 1/2
Sau bước 2 thì trong bình có: l nước, do đó a2 = 3/4
Sau bước 3 thì trong bình có: l nước, do đó a2 = 7/8
Ta có thể dự đoán an =
b) Ta chứng minh bằng quy nạp:
Bước 1. Với n = 1, ta có a1 = Do đó công thức đúng với n = 1.
Bước 2. Giả sử công thức đúng với n = k ≥ 1, nghĩa là có: ak =
Ta cần chứng minh đẳng thức đúng với n = k + 1, nghĩa là cần chứng minh:
ak + 1 =
Thật vậy:
ak là lượng nước có trong bình sau bước thứ k thì lượng nước có trong bình sau bước thứ k + 1 là:
ak + 1 =
Vậy công thức đúng với n = k + 1.
Theo nguyên lí quy nạp toán học, công thức đúng với mọi số tự nhiên n ≥ 1.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chứng minh rằng với mọi số tự nhiên n≥1, ta có
2.21 + 3.22 + 4.23 + … + (n + 1).2n = n.2n + 1.
Câu hỏi:
Chứng minh rằng với mọi số tự nhiên , ta có
2.21 + 3.22 + 4.23 + … + (n + 1).2n = n.2n + 1.Trả lời:
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có 2.21 = 4 = 1.21 + 1.
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:
2.21 + 3.22 + 4.23 + … + (k + 1).2k = k.2k + 1.
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:
2.21 + 3.22 + 4.23 + … + (k + 1).2k + [(k + 1) + 1].2k + 1 = (k + 1)2(k + 1) + 1.
Thật vậy, sử dụng giả thiết quy nạp ta có:
2.21 + 3.22 + 4.23 + … + (k + 1).2k + [(k + 1) + 1].2k + 1
= k.2k + 1 + [(k + 1) + 1].2k + 1
= (2k + 2).2k + 1
= (k + 1).2.2k + 1
= (k + 1)2k + 2
= (k + 1).2(k + 1) + 1.
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Đặt Sn=11.3+13.5+…+1(2n−1)(2n+1).
a) Tính S1, S2, S3.
b) Dự đoán công thức tính tổng Sn và chứng minh nó bằng quy nạp.
Câu hỏi:
Đặt .
a) Tính S1, S2, S3.
b) Dự đoán công thức tính tổng Sn và chứng minh nó bằng quy nạp.Trả lời:
a)
b) Từ a) ta có thể dự đoán
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 1 ta có
Như vậy khẳng định đúng cho trường hợp n = 1.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có:
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh:
Thật vậy, sử dụng giả thiết quy nạp ta có:
Vậy khẳng định đúng với mọi số tự nhiên n ≥ 1.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chứng minh rằng với mọi số tự nhiên n, ta có 102n + 1 + 1 chia hết cho 11.
Câu hỏi:
Chứng minh rằng với mọi số tự nhiên n, ta có 102n + 1 + 1 chia hết cho 11.
Trả lời:
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 0 ta có 102.0 + 1 + 1 = 11 ⁝ 11.
Như vậy khẳng định đúng cho trường hợp n = 0.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: 102k + 1 + 1 chia hết cho 11.
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: 102(k + 1) + 1 + 1 chia hết cho 11.
Thật vậy, ta có:
102(k + 1) + 1 + 1
= 10(2k + 1) + 2 + 1
= 100.102k + 1 + 1
= 100.102k + 1 + 100 – 100 + 1
= 100(102k + 1 + 1) – 100 + 1
= 100(102k + 1 + 1) – 99.
Vì 102k + 1 + 1 và 99 đều chia hết cho 11 nên 100(102k + 1 + 1) – 99 chia hết cho 11. Do đó 102(k + 1) + 1 + 1 chia hết cho 11.
Vậy khẳng định đúng với mọi số tự nhiên n.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có 5n ≥ 3n + 4n.
Câu hỏi:
Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có 5n ≥ 3n + 4n.
Trả lời:
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 2 ta có 52 = 25 = 32 + 42.
Như vậy khẳng định đúng cho trường hợp n = 2.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: 5k ≥ 3k + 4k.
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: 5k + 1 ≥ 3k + 1 + 4k + 1.
Thật vậy, sử dụng giả thiết quy nạp ta có:
5k + 1 = 5.5k ≥ 5(3k + 4k) = 5. 3k + 5.4k ≥ 3. 3k + 4.4k = 3k + 1 + 4k + 1.
Vậy khẳng định đúng với mọi số tự nhiên n.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- a) Khai triển (1 + x)10.
b) (1,1)10 và 2.
Câu hỏi:
a) Khai triển (1 + x)10.
b) (1,1)10 và 2.Trả lời:
a)
b) Áp dụng câu a) ta có:
====== **** mời các bạn xem câu tiếp bên dưới **** =====