Bài tập Toán 8 Đơn thức nhiều biến. Đa thức nhiều biến
A. Bài tập Đơn thức nhiều biến. Đa thức nhiều biến
Bài 1. Trong các biểu thức sau, biểu thức nào là đơn thức?
–2y; (1 + )xy; x2 ; 0; 3 ; x3y2; (y – 1)x2.
Hướng dẫn giải
–2y là đơn thức vì là tích của số và biến.
(1 + )xy là đơn thức vì là tích của số với các biến.
x2 không là đơn thức vì có phép chia cho biến y.
0 là đơn thức.
3 không là đơn thức vì có căn bậc hai của biến.
x3y2 là đơn thức vì lũy thừa của biến cũng là tích của các biến.
(y – 1)x2 không là đơn thức vì có phép trừ của biến.
Bài 2. Cho các đơn thức.
A = 5x(–2)x2yy; B = 2x2yz; C = xy2(1 + 2.1,5)x2z; D = (2023 + )x.
a) Liệt kê các đơn thức thu gọn trong các đơn thức trên và thu gọn các đơn thức còn lại.
b) Xác định hệ số, phần biến và bậc của mỗi đa thức trên.
Hướng dẫn giải
a) Các đơn thức thu gọn là: B = 2x2yz và D = (2023 + )x.
Thu gọn đa thức A và C ta được:
A = 5x(–2)x2yy = 5. (–2). .(x.x2).(y.y) = – x3y2
C = xy2(1 + 2.1,5)x2z = (1 + 2.1,5).(x.x2).y2.z = –2x3y2z.
b)
Đơn thức A khi thu gọn là – x3y2 có hệ số là – 1, phần biến là x3y2 và bậc là 3 + 2 = 5.
Đơn thức B = 2 x2yz có hệ số là 2 , phần biến là x2yz và bậc là 2 + 1 + 1 = 4.
Đơn thức C khi thu gọn là –2x3y2z có hệ số là – 2, phần biến là x3y2z và bậc là 3 + 2 + 1 = 6.
Đơn thức D = (2023 + )x có hệ số là 2023 + , phần biến là x, bậc là 1.
Bài 3. Cho các đơn thức: 4xy2; yxy; – 3x2y; 4y2 x; 5yxy2.
a) Liệt kê các đơn thức đồng dạng trong các đơn thức trên.
b) Tính tổng S của các đơn thức đồng dạng ở trên.
c) Tính giá trị của tổng S tại x = 1; y = – 2.
Hướng dẫn giải
a) Thu gọn các đơn thức chưa thu gọn, ta được:
yxy = xy2
4y2 x = 2xy2
5yxy2 = 5xy3
Vậy các đơn thức đồng dạng là: 4xy2; yxy; 4y2 vì có cùng phần biến là xy2.
b)
S = 4xy2 + ( yxy) + 4y2
= 4xy2 + ( xy2) + 2xy2
= [4 + ( ) + 2]xy2
= xy2
c) Thay x = 1; y = – 2, ta có:
S = .1.( – 2)2 = .4 = 22.
Vậy S = 22 tại x = 1; y = – 2.
Bài 4. Cho các biểu thức sau:
x3 – x2 + 2x + 3; xy4 + 2x3 – x2y + ; x3y2z + xyz – ; 2x2y2 – 5xyz + 2023;
a) Trong các biểu thức trên, biểu thức nào là đa thức?
b) Xác định hệ số và bậc của từng hạng tử trong các đa thức tìm được.
Hướng dẫn giải
a) Các đa thức là: x3 – x2 + 2x + 3; xy4 + 2x3 – x2y + ; 2x2y2 – 5xyz + 2023.
Biểu thức x3y2z + xyz – không là đa thức vì hạng tử – không là đơn thức.
b) Đa thức x3 – x2 + 2x + 3 có:
Hạng tử x3 có hệ số là 1, bậc 3;
Hạng tử – x2 có hệ số là – 1, bậc 2;
Hạng tử 2x có hệ số là 2, bậc 1;
Hạng tử 3 có hệ số là 3, bậc 0.
+ Đa thức xy4 + 2x3 – x2y + có:
Hạng tử xy4 có hệ số là 1, bậc 5;
Hạng tử 2x3 có hệ số là 2, bậc 3;
Hạng tử – x2y có hệ số là – 1, bậc 3;
Hạng tử có hệ số là , bậc 1.
+ Đa thức 2x2y2 – 5xyz + 2023 có:
Hạng tử 2x2y2 có hệ số là 2, bậc 4;
Hạng tử – 5xyz có hệ số là – 5, bậc 3;
Hạng tử 2023 có hệ số là 2023, bậc 0.
Bài 5. Thu gọn (nếu cần) và tìm bậc của mỗi đa thức sau:
A = 3x2y – 5xy + x2y – xy + 3xy – x ++ x – ;
B = 7x5 – x3y – xy2 + 3;
C = 5x2y + xy2 – xy + 3 + 2xy2 – 5xy – 5x2y + 1.
Hướng dẫn giải
A = 3x2y – 5xy + x2y – xy + 3xy – x + + x –
= (3x2y + x2y) + (– 5xy – xy + 3xy) + (– x + x ) + ( – )
= x2y – 3xy – x – 1
Hạng tử x2y có bậc 3; hạng tử – 3xy có bậc 2; hạng tử – x có bậc 1; – 1 có bậc 0.
Nên đa thức A có bậc là 3.
B = 7x5 – x3y – xy2 + 3 là đa thức đa thu gọn có:
Hạng tử 7x5 có bậc 5; hạng tử – x3y có bậc 4; hạng tử – xy2 có bậc 3; hạng tử 3 có bậc 0.
Nên đa thức B có bậc là 5.
C = 5x2y + xy2 – xy + 3 + 2xy2 – 5xy – 5x2y + 1
= (5x2y – 5x2y) + (xy2 + 2xy2) + (– xy – 5xy) + (3 + 1)
= 3xy2 – 6xy + 4
Hạng tử 3xy2 có bậc 3; hạng tử – 6xy có bậc 2; hạng tử 4 có bậc 0.
Nên đa thức C có bậc 3.
Bài 6. Cho đa thức M = 9x2y2z – 3xyz + 5y2z – 6x2y2z + x2y2 – 3x2y2z.
a) Thu gọn và tìm bậc của đa thức M;
b) Tính giá trị của đa thức M tại x = 1; y = – 1 và z = 2.
Hướng dẫn giải
a) Thu gọn đa thức M:
M = 9x2y2z – 3xyz + 5y2z – 6x2y2z + x2y2 – 3x2y2z
= (9x2y2z – 6x2y2z – 3x2y2z) – 3xyz + 5y2z + x2y2
= – 3xyz + 5y2z + x2y2
Hạng tử – 3xyz có bậc 3; hạng tử 5y2z có bậc 3; hạng tử x2y2 có bậc 4.
Vậy đa thức M có bậc 4.
b) Thay x = 1; y = – 1 và z = 2 vào đa thức M thu gọn, ta được:
M = – 3.1.( – 1).2 + 5.(– 1)2.2 + 12.( – 1)2
= 6 + 10 + 1
= 17
Vậy M = 17 tại x = 1; y = – 1 và z = 2.
Bài 7. Chỉ ra các đơn thức, đa thức trong các biểu thức sau:
Hướng dẫn giải
Các đơn thức là: 3xyz; x2y.
Các đa thức gồm:
+ Các đơn thức 3xyz; x2y;
+ Đa thức và 2 – x.
Bài 8. Thu gọn các đơn thức sau, chỉ ra phần biến, hệ số của mỗi đơn thức đó.
Hướng dẫn giải
•Ta có
Đơn thức trên có hệ số là , bậc bằng 2 + 1 + 1 = 4;
•Ta có – 5a3b3cb = (–5 . 3)a3(b . b)c = – 15a3b2c
Đơn thức trên có hệ số là –15, bậc bằng 3 + 2 + 1 = 6.
Bài 9. Thu gọn và tìm bậc của mỗi đa thức:
a) A = 2x5y + 7xy2 – x5 + x5y – 10.
b) B = x2y2 – 3xy2 + 2x2y2 + 5x2y.
Hướng dẫn giải
a) A = 2x5y + 7xy2 – x5 + x5y – 10
= (2x5y + x5y) + 7xy2 – x5 – 10
= 3x5y + 7xy2 – x5 – 10
Các hạng tử của A lần lượt có bậc là 6; 3; 5; 0
Do đó bậc của A bằng 6.
b) B = x2y2 – 3xy2 + 2x2y2 + 5x2y
= (x2y2 + 2x2y2) – 3xy2 + 5x2y
= 3x2y2 – 3xy2 + 5x2y
Các hạng tử của B lần lượt có bậc là 4; 3; 3
Do đó bậc của A bằng 4.
Bài 10. Tính giá trị của biểu thức A = x – y + z + y3 + x2y – z5 tại x = 5, y = 2, z = –1.
Hướng dẫn giải
Thay x = 5, y = 2, z = – 1 vào đa thức A = x – y + z + y3 + x2y – z5 ta được
A = 5 – 2 + (–1) + 23 + 52 . 2 – (–1)5
= 5 – 2 – 1 + 8 + 25 . 2 + 1
= 61
Vậy A = 61.
Bài 11. Có hai bể hình hộp chữ nhật A (đầy nước) và B (bể rỗng) có các kích thước (đơn vị: mét) như hình vẽ.
a) Viết biểu thức biểu thị phần nước còn lại ở bể A sau khi đổ nước từ bể A sang bể B (coi phần nước bị đổ ra ngoài khi đổ từ bể A sang bể B không đáng kể).
b) Khi x = 0,2 (m) và y = 0,5 (m) thì trong bể A còn lại khoảng bao nhiêu lít nước (làm tròn kết quả đến hàng phần mười)?
Hướng dẫn giải
a) Thể tích bể A là:
3x . 2y . 2x = (3 . 2 . 2)(x . x)y = 12x2y (m3).
Thể tích bể B là:
Phần nước còn lại ở bể A sau khi đổ nước từ bể A sang bể B là:
(m3).
b) Thay x = 0,2 (m) và y = 0,5 (m) vào biểu thức ta được:
Vậy trong bể A còn lại khoảng 186,7 lít nước.
Bài 12. Thu gọn các đơn thức sau:
a) 12xy5x3y2z;
b) x2y3y3z.
Hướng dẫn giải
a) 12xy5x3y2z = 12 . (x . x3) . (y5.y2) . z
= 12x4y7z
b) x2y3y3z = . x2 . ( y3 . y3) . z
= x2y5z
Bài 13. Thu gọn các đa thức sau:
a) 15xy + 3 + 2xy +5;
b) 2,7x2y + 1,3xy2 – 1,7x2y + 4,7xy2 – 15.
Hướng dẫn giải
a) 15xy + 3 + 2xy +5 = (15xy + 2xy) + (3 + 5)
= 17xy + 8.
b) 2,7x2y + 1,3xy2 – 1,7x2y + 4,7xy2 – 15
= (2,7x2y – 1,7x2y) + (1,3xy2 + 4,7xy2) – 15
= x2y + 6xy2 – 15.
Bài 14. Tính giá trị của đa thức sau:
P = x2y – 12x3y + xy – 27 tại x = 1; y = 2.
Hướng dẫn giải
Thay x = 1; y = 2 vào biểu thức P, ta được:
P = 12 . 2 – 12 . 13 . 2 + 1 . 2 – 27
= 2 – 24 + 2 – 27 = – 47.
Vậy với x = 1; y = 2 thì giá trị của biểu thức P = – 47.
B. Lý thuyết Đơn thức nhiều biến. Đa thức nhiều biến
1. Đơn thức nhiều biến
1.1. Khái niệm
Đơn thức nhiều biến (hay đơn thức) là biểu thức đại số chỉ gồm một số, hoặc một biến, hoặc một tích giữa các số và các biến.
Ví dụ: Các biểu thức ; x, x2y, –3x2y là các đơn thức.
1.2. Đơn thức thu gọn
Đơn thức thu gọn là đơn thức chỉ gồm tích của một số với các biến, mà mỗi biến đã được nâng lên lũy thừa với số mũ nguyên dương và chỉ được viết một lần
Số nói trên gọi là hệ số, phần còn lại là phần biến của đơn thức thu gọn.
Ví dụ: Đơn thức –2xy2z là đơn thức thu gọn có hệ số là –2 và phần biến là xy2z.
Chú ý: Ta cũng coi một số là đơn thức thu gọn.
Khi nói đến đơn thức, nếu không nói gì thêm, ta hiểu đó là đơn thức thu gọn.
1.3. Đơn thức đồng dạng
Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến.
Ví dụ: Đơn thức xy đồng dạng với đơn thức 3xy vì chúng có hệ số khác 0 và có cùng phần biến là xy.
1.4. Cộng trừ các đơn thức đồng dạng
Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.
Ví dụ: 2xy2 + 3xy2 = 5xy2
2. Đa thức nhiều biến
2.1. Khái niệm
Đa thức nhiều biến (hay đa thức) là một tổng của những đơn thức.
Ví dụ: biều thức 2x + y – xy là một đa thức của hai biến x, y.
Chú ý: Mỗi đơn thức được coi là một đa thức.
Ví dụ: Đơn thức x2y cũng là một đa thức.
2.2. Thu gọn đa thức
Thu gọn đa thức là làm cho trong đa thức đó không còn hai đơn thức nào đồng dạng.
Ví dụ: Thu gọn đa thức: A = x2 + 2y2 + xy + 3x2 + 3xy + 2y2.
Hướng dẫn giải
Ta có A = x2 + 2y2 + xy + 3x2 + 3xy + 2y2
= (x2 + 3x2) + (2y2 + 2y2) + (xy + 3xy)
= 4x2 + 4y2 + 4xy.
2.3. Giá trị của đa thức
Để tính giá trị của một đa thức tại những giá trị cho trước của các biến, ta thay những giá trị cho trước đó vào biểu thức xác định đa thức rồi thực hiện các phép tính.
Ví dụ: Giá trị của đa thức A = x2 – 3xy tại x = 2; y = 1 là:
A = 22 – 3. 2.1 = 4 – 6 = –2.