Câu hỏi:
Một tổ học sinh có 5 nam và 5 nữ xếp thành 1 hàng dọc sao cho không có học sinh cùng giới tính đứng kề nhau. Số cách xếp là:
A. 5!.5!
B. 2.(5!)2
Đáp án chính xác
C. 10!
D. 2.5!
Trả lời:
Theo bài ra, ta thấy cách sắp xếp chính là việc nam nữ đứng xen kẽ nhau.
Như vậy sẽ có hai trường hợp, hoặc là bạn nam đứng đầu hàng hoặc là bạn nữ đứng đầu hàng
+ Trường hợp 1: Nam đứng đầu:xếp vào các vị trí lẻ có 5!
Xếp 5 bạn nữ vào 5 vị trí còn lại có 5 !
Do đó, có 5!.5! =
+ Trường hợp 2: Nếu bạn nữ đứng đầu:
Tương tụ , có
Vậy số cách sắp xếp cần tìm 2.(5!)2.
Chọn B.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hỏi có bao nhiêu đa thức bậc ba P(x) =ax3+bx2+cx+d mà các hệ số a, b, c, d thuộc tập {-3,-2,0,2,3}. Biết rằng: các hệ số tùy ý.
Câu hỏi:
Hỏi có bao nhiêu đa thức bậc ba P(x) =ax3+bx2+cx+d mà các hệ số a, b, c, d thuộc tập {-3,-2,0,2,3}. Biết rằng: các hệ số tùy ý.
A. 3125
B. 625
C. 500
Đáp án chính xác
D. 360
Trả lời:
Khi các hệ số tùy ý; ta cần thực hiện các bước sau:
Chọn hệ số a: có 4 cách chọn hệ số a vì a≠0.
Chọn hệ số b: có 5 cách chọn hệ số b.
Chọn hệ số c: có 5 cách chọn hệ số c
Chọn hệ số d: có 5 cách chọn hệ số d.
Theo quy tắc nhân có: 4.5.5.5=500 đa thức.
Chọn C.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hỏi có bao nhiêu đa thức bậc ba P(x) =ax3+bx2+cx+d mà các hệ số a, b, c, d thuộc tập {-3,-2,0,2,3}. Biết rằng các hệ số đều khác nhau.
Câu hỏi:
Hỏi có bao nhiêu đa thức bậc ba P(x) =ax3+bx2+cx+d mà các hệ số a, b, c, d thuộc tập {-3,-2,0,2,3}. Biết rằng các hệ số đều khác nhau.
A: 525
B: 96
Đáp án chính xác
C: 192
D:384
Trả lời:
Khi các hệ số khác nhau:
– Có 4 cách chọn hệ số a (a≠0).
– Khi đã chọn a, có 4 cách chọn b.
– Khi đã chọn a và b, có 3 cách chọn c.
– Khi đã chọn a, b và c có 2 cách chọn d.
Theo quy tắc nhân ta có. 4.4.3.2=96 đa thức.
Chọn B.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?
Câu hỏi:
Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?
A. 444
Đáp án chính xác
B. 480
C. 420
D. 468
Trả lời:
Gọi số cần tìm có dạng . Vì chia hết cho 5 suy ra e =0 hoặc 5.
TH1. Với e=0
Nếu a=1; thì có 5 cách chọn b; 4 cách chọn c và 3 cách chọn d.
Theo quy tắc nhân có 1.5.4.3=60 số.
Tương tự nếu b=1; c=1 hoặc d=1 ta cũng có 60 số.
Trong trường hợp 1 có tất cả 60.4=240 số cần tìm.
TH2. Với e=5,
Nếu a=1 thì có 5 cách chọn b; 4 cách chọn c và 3 cách chọn c. Theo quy tắc nhân có 1.5.4.3=60 số.
Nếu b= 1 thì có 4 cách chon a( a khác 0); 4 cách chọn c và 3 cách chọn d suy ra có 1.4.4.3=48 số
Tương tự với c=1 hoặc d=1 cũng có 48 số
Trong trường hợp 2 có 60+3.48= 204.
Vậy có tất cả 204+240= 444 số cần tìm.
Chọn A.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?
Câu hỏi:
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?
A. 20
B. 21
C. 22
D. 23
Đáp án chính xác
Trả lời:
Giả sử số đó là
Trường hợp 1: c=0 xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.
Trường hợp 2 c=5 . Với a=2 chọn b có 6 cách nên có 6 số thỏa mãn.
Với a khác 2 chọn a có 5 cách chọn, và tất nhiên b=2 nên có 5 số thỏa mãn.
Do đó có 12+6+5=23 số thỏa mãn.
Chọn D.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Một người có 7 chiếc áo sơ mi, trong đó có 3 chiếc áo sơ mi trắng; có 5 cái cà vạt trong đó có 2 cà vạt màu vàng. Hỏi người đó có bao nhiêu cách chọn một chiếc áo và một cà vạt thỏa mãn điều kiện: nếu chọn áo trắng thì không chọn cà vạt màu vàng
Câu hỏi:
Một người có 7 chiếc áo sơ mi, trong đó có 3 chiếc áo sơ mi trắng; có 5 cái cà vạt trong đó có 2 cà vạt màu vàng. Hỏi người đó có bao nhiêu cách chọn một chiếc áo và một cà vạt thỏa mãn điều kiện: nếu chọn áo trắng thì không chọn cà vạt màu vàng
A. 35
B. 29
Đáp án chính xác
C. 15
D. 21
Trả lời:
Người đó có hai phương án lựa chọn như sau:Phương án 1: Không chọn áo sơ mi trắng. Có 4 cách chọn áo và 5 cách chọn cà vạt. Khi đó theo quy tắc nhân, sẽ có 4.5 = 20 cách chọn.Phương án 2: Chọn áo sơ mi trắng. Có 3 cách chọn áo và 3 cách chọn cà vạt. Khi đó theo quy tắc nhân, sẽ có 3.3 = 9 cách chọn.Vậy theo quy tắc cộng, số cách chọn áo, cà vạt của người đó là : 20 + 9 = 29 cách lựa chọn.Chọn B.
====== **** mời các bạn xem câu tiếp bên dưới **** =====