Câu hỏi:
Một thầy giáo có 10 cuốn sách khác nhau trong đó có 4 cuốn sách Toán, 3 cuốn sách Lí, 3 cuốn sách Hóa. Thầy muốn lấy ra 5 cuốn và tặng cho 5 em học sinh mỗi em một cuốn. Hỏi thầy giáo có bao nhiêu cách tặng cho các em học sinh sao cho số sách còn lại có đủ cả ba loại?
Trả lời:
Trường hợp 1: Tặng hết 4 cuốn sách Toán.
Số cách chọn 4 cuốn sách Toán là 1 cách.
Số cách chọn 1 cuốn trong 6 cuốn còn lại là 6 cách.
Vậy có 6 cách chọn sách.
Số cách tặng 5 cuốn sách đó cho 5 em học sinh là cách.
Vậy có cách.
Trường hợp 2: Tặng hết 3 cuốn sách Lí.
Số cách chọn 3 cuốn sách Lí là 1 cách.
Số cách chọn 2 cuốn trong 7 cuốn còn lại là cách.
Vậy có 21 cách chọn sách.
Số cách tặng 5 cuốn sách đó cho 5 em học sinh là cách.
Vậy có cách.
Trường hợp 3: Tặng hết 3 cuốn sách Hóa: Tương tự trường hợp 2 thì có 2520 cách.
Số cách chọn 5 cuốn bất kì trong 10 cuốn và tặng cho 5 em là cách.
Vậy số cách chọn sao cho sau khi tặng xong, mỗi loại sách trên đều còn lại ít nhất một cuốn là (cách).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Từ các số tự nhiên 1,2,3,4 có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau?
Câu hỏi:
Từ các số tự nhiên 1,2,3,4 có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau?
Trả lời:
Mỗi cách sắp xếp thứ tự bốn chữ số 1,2,3,4 ta được một số tự nhiên theo yêu cầu đề bài.
Do đó số các số tự nhiên có bốn chữ số khác nhau được lập từ các chữ số 1,2,3,4 là: 4!=24====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Có bao nhiêu cách xếp 7 học sinh trong đó có An và Bình vào một hàng ghế dài gồm 7 ghế sao cho An và Bình ngồi ở hai ghế đầu?
Câu hỏi:
Có bao nhiêu cách xếp 7 học sinh trong đó có An và Bình vào một hàng ghế dài gồm 7 ghế sao cho An và Bình ngồi ở hai ghế đầu?
Trả lời:
An và Bình chỉ ngồi đầu và ngồi cuối, hoán đổi cho nhau nên có cách xếp.
Xếp vị trí cho các bạn còn lại, ta có cách xếp.
Vậy ta có 2!.5! = 240 cách xếp.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Có 6 học sinh và 2 thầy giáo được xếp thành hàng ngang. Hỏi có bao nhiêu cách xếp sao cho hai thầy giáo không đứng cạnh nhau?
Câu hỏi:
Có 6 học sinh và 2 thầy giáo được xếp thành hàng ngang. Hỏi có bao nhiêu cách xếp sao cho hai thầy giáo không đứng cạnh nhau?
Trả lời:
Có 8! cách xếp 8 người.
Có 2! cách xếp hai giáo viên đứng cạnh nhau.
Khi đó có 2!.7! cách xếp 8 người sao cho hai giáo viên đứng cạnh nhau.
Mà hai giáo viên không đứng cạnh nhau nên số cách xếp là cách xếp 8!-2!.7!=30240.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Có bao nhiêu số tự nhiên gồm 5 chữ số khác nhau được lập từ các chữ số 1,2,…,9?
Câu hỏi:
Có bao nhiêu số tự nhiên gồm 5 chữ số khác nhau được lập từ các chữ số 1,2,…,9?
A. 15120
Đáp án chính xác
B. 95
C. 59
D. 126
Trả lời:
Số các số tự nhiên có 5 chữ số khác nhau được lập từ các chữ số là số cách sắp xếp thứ tự 5 chữ số khác nhau từ 9 chữ số đã cho.
Do đó số các số thỏa mãn là:
A95 =15120
Chọn A
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Có bao nhiêu cách xếp 8 học sinh ngồi xung quanh một bàn tròn có 8 ghế?
Câu hỏi:
Có bao nhiêu cách xếp 8 học sinh ngồi xung quanh một bàn tròn có 8 ghế?
Trả lời:
Xếp 8 học sinh theo hình tròn nên ta phải cố định vị trí một bạn, sau đó xếp vị trí cho 7 bạn còn lại có 7! cách.
Vậy có 7!=5040 cách.====== **** mời các bạn xem câu tiếp bên dưới **** =====