Câu hỏi:
Cho tứ diện ABCD. Gọi I, J lần lượt là các điểm nằm trên AB, AD sao cho BD và IJ không song song. Tìm thiết diện tạo bởi (CU) và hình chóp
Trả lời:
Ta có
Vậy thiết diện cần tìm là ∆CIJ
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M, N lần lượt là trung điểm của SB và SC.
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)
Câu hỏi:
Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M, N lần lượt là trung điểm của SB và SC.
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)Trả lời:
a) Trong mặt phẳng (ABCD):
Ta có (SAD) và (SBC) có S chung
Lại có
Nên====== **** mời các bạn xem câu tiếp bên dưới **** =====
- b) Tìm thiết diện của hình chóp với mặt phẳng (AMN)
Câu hỏi:
b) Tìm thiết diện của hình chóp với mặt phẳng (AMN)
Trả lời:
b) Trong mặt phẳng (SOB) có và trong (SOA) gọi
Khi đó ta có
Vậy thiết diện của tứ diện cắt bởi mặt phẳng (AMN) là tứ giác AMNQ
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tứ diện ABCD có M, N lần lượt là trung điểm của AB, CD và P là một điểm thuộc cạnh BC (P không trùng trung điểm cạnh BC). Tìm thiết diện của tứ diện cắt bởi mặt phẳng (MNP).
Câu hỏi:
Cho tứ diện ABCD có M, N lần lượt là trung điểm của AB, CD và P là một điểm thuộc cạnh BC (P không trùng trung điểm cạnh BC). Tìm thiết diện của tứ diện cắt bởi mặt phẳng (MNP).
Trả lời:
Trong mp (ABC) kéo dài MP và AC cắt nhau tại I.
Trong mp (ACD) kéo dài IN cắt AD tại Q
Ta có
Vậy thiết diện của tứ diện cắt bởi mặt phẳng (MNP) là tứ giác MNPQ====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P là các điểm lần lượt trên các cạnh CB, CD, SA. Tìm thiết diện của hình chóp cắt bởi mặt phẳng (MNP)
Câu hỏi:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P là các điểm lần lượt trên các cạnh CB, CD, SA. Tìm thiết diện của hình chóp cắt bởi mặt phẳng (MNP)
Trả lời:
Trong mặt phẳng (ABCD) gọi
Trong (SAD) gọi
Trong (SAB) gọi
Khi đó, dễ dàng chứng minh được M, N, Q, P, R lần lượt là giao điểm của (MNP) với các cạnh BC, CD, SD, SA, SB.
Do đó thiết diện cần tìm là ngũ giác MNQPR====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình chóp S.ABCD (AB và CD không song song) và M là điểm nằm trong ∆SCD. Xác định thiết diện của hình chóp cắt bởi mặt phẳng (ABM)
Câu hỏi:
Cho hình chóp S.ABCD (AB và CD không song song) và M là điểm nằm trong ∆SCD. Xác định thiết diện của hình chóp cắt bởi mặt phẳng (ABM)
Trả lời:
Trong (ABCD) gọi
Trong (SCD) gọi
Khi đó, dễ dàng chứng minh được E, F lần lượt là giao điểm của (ABM) với SC, SD.
Do đó thiết diện cần tìm là tứ giác ABEF.====== **** mời các bạn xem câu tiếp bên dưới **** =====