Câu hỏi:
Xét dấu của mỗi tam thức bậc hai sau:
a) f(x) = – 2×2 + 4x – 5;
b) f(x) = – x2 + 6x – 9.
Trả lời:
a) Tam thức bậc hai f(x) = – 2x2 + 4x – 5 có ∆ = b2 – 4ac = 42 – 4 . (– 2) . (– 5) = – 24 < 0, hệ số a = – 2 < 0 nên f(x) < 0 với mọi
b) Tam thức bậc hai f(x) = – x2 + 6x – 9 có ∆ = b2 – 4ac = 62 – 4 . (– 1) . (– 9) = 0, nghiệm kép x0 = và hệ số a = – 1 < 0 nên f(x) < 0 với mọi
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Để xây dựng phương án kinh doanh cho một loại sản phẩm, doanh nghiệp tính toán lợi nhuận y (đồng) theo công thức sau: y = – 200×2 + 92 000x – 8 400 000, trong đó x là số sản phẩm được bán ra. Như vậy, việc đánh giá hiệu quả kinh doanh loại sản phẩm trên dẫn tới việc xét dấu của y = – 200×2 + 92 000x – 8 400 000, tức là ta cần xét dấu của tam thức bậc hai f(x) = – 200×2 + 92 000x – 8 400 000.
Làm thế nào để xét dấu tam thức bậc hai?
Câu hỏi:
Để xây dựng phương án kinh doanh cho một loại sản phẩm, doanh nghiệp tính toán lợi nhuận y (đồng) theo công thức sau: y = – 200×2 + 92 000x – 8 400 000, trong đó x là số sản phẩm được bán ra. Như vậy, việc đánh giá hiệu quả kinh doanh loại sản phẩm trên dẫn tới việc xét dấu của y = – 200×2 + 92 000x – 8 400 000, tức là ta cần xét dấu của tam thức bậc hai f(x) = – 200×2 + 92 000x – 8 400 000.
Làm thế nào để xét dấu tam thức bậc hai?Trả lời:
Đa thức bậc hai f(x) = ax2 + bx + c (a ≠ 0) được gọi là tam thức tâm bậc hai.
Sau bài học thứ 3 của chương 3 này, ta sẽ biết cách xét dấu tam thức bậc hai và áp dụng vào xét dấu tam thức bậc hai f(x) = – 200x2 + 92 000x – 8 400 000.
Ta có: a = – 200, b = 92 000, c = – 8 400 000.
∆ = b2 – 4ac = 920002 – 4 . (– 200) . (– 8 400 000) = 1 744 000 000 > 0
Khi đó f(x) có hai nghiệm ; .
Lại có a = – 200 < 0.
Do đó f(x) < 0 với mọi x thuộc các khoảng và .
f(x) > 0 với mọi x thuộc khoảng .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- a) Quan sát Hình 17 và cho biết dấu của tam thức bậc hai f(x) = x2 – 2x + 2.
b) Quan sát Hình 18 và cho biết dấu của tam thức bậc hai f(x) = – x2 + 4x – 5.
c) Từ đó rút ra mối liên hệ về dấu của tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0) với dấu của hệ số a trong trường hợp ∆ < 0.
Câu hỏi:
a) Quan sát Hình 17 và cho biết dấu của tam thức bậc hai f(x) = x2 – 2x + 2.
b) Quan sát Hình 18 và cho biết dấu của tam thức bậc hai f(x) = – x2 + 4x – 5.
c) Từ đó rút ra mối liên hệ về dấu của tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0) với dấu của hệ số a trong trường hợp ∆ < 0.
Trả lời:
a) Quan sát Hình 17 ta thấy parabol nằm hoàn toàn phía trên trục hoành nên tam thức bậc hai f(x) = x2 – 2x + 2 > 0.
b) Quan sát Hình 18 ta thấy parabol nằm hoàn toàn phía dưới trục hoành nên tam thức bậc hai f(x) = – x2 + 4x – 5 < 0.
c) Nếu ∆ < 0 thì f(x) cùng dấu với hệ số a với mọi .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- a) Quan sát Hình 19 và cho biết dấu của tam thức bậc hai f(x) = x2 + 2x + 1.
b) Quan sát Hình 20 và cho biết dấu của tam thức bậc hai f(x) = – x2 + 4x – 4.
c) Từ đó rút ra mối liên hệ về dấu của tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0) với dấu của hệ số a trong trường hợp ∆ = 0.
Câu hỏi:
a) Quan sát Hình 19 và cho biết dấu của tam thức bậc hai f(x) = x2 + 2x + 1.
b) Quan sát Hình 20 và cho biết dấu của tam thức bậc hai f(x) = – x2 + 4x – 4.
c) Từ đó rút ra mối liên hệ về dấu của tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0) với dấu của hệ số a trong trường hợp ∆ = 0.
Trả lời:
a) Quan sát Hình 19, ta thấy parabol có đỉnh I(– 1; 0) thuộc trục hoành và phần parabol còn lại nằm phía trên trục hoành nên tam thức bậc hai f(x) = x2 + 2x + 1 > 0 với mọi .
b) Quan sát Hình 20, ta thấy parabol có đỉnh I(2; 0) thuộc trục hoành và phần parabol còn lại nằm phía dưới trục hoành nên tam thức bậc hai f(x) = – x2 + 4x – 4 < 0 với mọi .
c) Nếu ∆ = 0 thì f(x) cùng dấu với hệ số a với mọi====== **** mời các bạn xem câu tiếp bên dưới **** =====
- a) Quan sát Hình 21 và cho biết dấu của tam thức bậc hai f(x) = x2 + 3x + 2 tùy theo các khoảng của x.
b) Quan sát Hình 22 và cho biết dấu của tam thức bậc hai f(x) = – x2 + 4x – 3 tùy theo các khoảng của x.
c) Từ đó rút ra mối quan hệ về dấu của tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0) với dấu của hệ số a tùy theo các khoảng của x trong trường hợp ∆ > 0.
Câu hỏi:
a) Quan sát Hình 21 và cho biết dấu của tam thức bậc hai f(x) = x2 + 3x + 2 tùy theo các khoảng của x.
b) Quan sát Hình 22 và cho biết dấu của tam thức bậc hai f(x) = – x2 + 4x – 3 tùy theo các khoảng của x.
c) Từ đó rút ra mối quan hệ về dấu của tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0) với dấu của hệ số a tùy theo các khoảng của x trong trường hợp ∆ > 0.
Trả lời:
a) Quan sát Hình 21, ta thấy
+ Trên khoảng (– 2; – 1), phần parabol nằm hoàn toàn phía dưới trục hoành nên tam thức bậc hai f(x) = x2 + 3x + 2 < 0.
+ Trên các khoảng (– ∞; – 2) và (– 1; + ∞), phần parabol nằm hoàn toàn phía trên trục hoành nên tam thức bậc hai f(x) = x2 + 3x + 2 > 0.
b) Quan sát Hình 22, ta thấy:
+ Trên khoảng (1; 3), phần parabol nằm hoàn toàn phía trên trục hoành nên tam thức bậc hai f(x) = – x2 + 4x – 3 > 0.
+ Trên các khoảng (– ∞; 1) và (3; + ∞), phần parabol nằm hoàn toàn phía dưới trục hoành nên tam thức bậc hai f(x) = – x2 + 4x – 3 < 0.
c) Nếu ∆ > thì f(x) cùng dấu với hệ số a với mọi x thuộc các khoảng (– ∞; x1) và (x2; + ∞); f(x) trái dấu với hệ số a với mọi x thuộc khoảng (x1; x2), trong đó x1, x2 là hai nghiệm của f(x) và x1 < x2.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Lập bảng xét dấu của tam thức bậc hai: f(x) = – x2 – 2x + 8.
Câu hỏi:
Lập bảng xét dấu của tam thức bậc hai: f(x) = – x2 – 2x + 8.
Trả lời:
Tam thức bậc hai f(x) = – x2 – 2x + 8 có ∆ = b2 – 4ac = (– 2)2 – 4 . (– 1) . 8 = 36 > 0.
Do đó tam thức bậc hai có hai nghiệm x1 = – 4, x2 = 2 và hệ số a = – 1 < 0.
Ta có bảng xét dấu như sau:x
– ∞ – 4 2 + ∞
f(x)
– 0 + 0 –
====== **** mời các bạn xem câu tiếp bên dưới **** =====