Câu hỏi:
Viết phương trình đường tròn (C) có tâm thuộc đường thẳng d’ và tiếp xúc với d tại điểm A.
Trả lời:
Hướng dẫn giải
Gọi I là tâm của đường tròn (C).
Vì d tiếp xúc với (C) tại điểm A nên ta có IA ⊥ d, do đó I thuộc Δ. Mặt khác, I thuộc đường thẳng d’. Suy ra toạ độ của I thoả mãn hệ phương trình
\(\left\{ {\begin{array}{*{20}{c}}{4x – 3y – 10 = 0}\\{2x + y = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{4x – 3y = 10}\\{2x + y = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = – 2}\end{array}} \right.\)
Do đó, I(1; –2)
Bán kính của (C) là: \(R = IA = \sqrt {{{\left( {4 – 1} \right)}^2} + {{\left( {2 – \left( { – 2} \right)} \right)}^2}} = 5\).
Vậy phương trình của (C) là
(x – 1)2 + (y + 2)2 = 52
⟺ (x – 1)2 + (y + 2)2 = 25.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tìm tâm và bán kính của đường tròn (C) trong các trường hợp sau:
(x – 2)2 + (y – 8)2 = 49;
Câu hỏi:
Tìm tâm và bán kính của đường tròn (C) trong các trường hợp sau:
(x – 2)2 + (y – 8)2 = 49;Trả lời:
Hướng dẫn giải
Phương trình đường tròn có dạng: (x – a)2 + (y – b)2 = R2
Với (a; b) là tọa độ tâm I và R > 0 là bán kính của đường tròn
Xét (x – 2)2 + (y – 8)2 = 49 có:
a = 2, b = 8, R2 = 49 ⇒ R = 7
Vậy đường tròn (C) có tâm I(2; 8) và bán kính R = 7.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- (x + 3)2 + (y – 4)2 = 23.
Câu hỏi:
(x + 3)2 + (y – 4)2 = 23.
Trả lời:
Hướng dẫn giải
Phương trình đường tròn có dạng: (x – a)2 + (y – b)2 = R2
Với (a; b) là tọa độ tâm I và R > 0 là bán kính của đường trònXét(x + 3)2 + (y – 4)2 = 23 có:
a = –3, b = 4, R2 = 23 ⇒ R = \(\sqrt {23} \)
Vậy đường tròn (C) có tâm I(–3; 4) và bán kính R = \(\sqrt {23} \).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Phương trình nào dưới đây là phương trình của một đường tròn? Khi đó hãy tìm tâm và bán kính của nó.
x2 + 2y2 – 4x – 2y + 1 = 0.
Câu hỏi:
Phương trình nào dưới đây là phương trình của một đường tròn? Khi đó hãy tìm tâm và bán kính của nó.
x2 + 2y2 – 4x – 2y + 1 = 0.Trả lời:
Hướng dẫn giải
Phương trình đã cho không là phương trình của đường tròn do hệ số của x2 và y2 không bằng nhau====== **** mời các bạn xem câu tiếp bên dưới **** =====
- x2 + y2 – 4x + 3y + 2xy = 0.
Câu hỏi:
x2 + y2 – 4x + 3y + 2xy = 0.
Trả lời:
Hướng dẫn giải
Phương trình đã cho không là phương trình của đường tròn do trong phương trình của đường tròn không có thành phần tích xy.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- x2 + y2 – 8x – 6y + 26 = 0.
Câu hỏi:
x2 + y2 – 8x – 6y + 26 = 0.
Trả lời:
Hướng dẫn giải
Phương trình đã cho có các hệ số a = 4, b = 3, c = 26, ta có:
a2 + b2 – c = 42 + 32 – 26 = –1 < 0
do đó nó không là phương trình của đường tròn.====== **** mời các bạn xem câu tiếp bên dưới **** =====