Câu hỏi:
Trong một tuần, bạn Mạnh có thể thu xếp được tối đa 12 giờ để tập thể dục giảm cân bằng hai môn : đạp xe và tập cử tạ tại phòng tập. Cho biết mỗi giờ đạp xe sẽ tiêu hao 350 calo và không tốn chi phí, mỗi giờ tập cử tạ sẽ tiêu hao 700 calo với chi phí 50 000 đồng/giờ. Mạnh muốn tiêu hao nhiều calo nhưng không được vượt quá 7 000 calo một tuần. Hãy giúp bạn Mạnh tính số giờ đạp xe và số giờ tập tạ một tuần trong hai trường hợp sau :
a) Mạnh muốn chi phí tập luyện là ít nhất.
b) Mạnh muốn số calo tiêu hao là lớn nhất.
Trả lời:
Gọi x (giờ) là số giờ bạn Mạnh đạp xe, y (giờ) là số giờ bạn Mạnh tập tạ trong một tuần.
Hiển nhiên ta có x ≥ 0 và y ≥ 0.
Tổng số giờ bạn Mạnh tập thể dục trong một tuần là : x + y (giờ)
Do một tuần bạn Mạnh thu xếp được tối đa 12 giờ để tập thể dục nên ta có bất phương trình sau : x + y ≤ 12.
Do mỗi giờ đạp xe tiêu hao 350 calo nên với x giờ đạp xe sẽ tiêu hao 350x calo.
Mỗi giờ tập tạ tiêu hao 700 calo nên với y giờ tập tạ sẽ tiêu hao 700y calo.
Tổng số calo tiêu hao là : 350x + 700y (calo).
Mặt khác, Mạnh muốn tiêu hao nhiều calo nhưng không được vượt quá 7 000 calo một tuần. Vì vậy, ta có bất phương trình : 350x + 700y ≤ 7 000, tức là : x + 2y ≤ 20.
Vậy ta có hệ bất phương trình là :
Biểu diễn miền nghiệm của hệ trên mặt phẳng tọa độ Oxy ta được hình ảnh sau :
Vậy, miền không tô màu (miền tứ giác OABC, bao gồm cả các cạnh) là phần giao miền nghiệm của các bất phương trình trong hệ và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình trên.
Tọa độ các đỉnh của tứ giác đó là : O(0 ;0) ; A (0; 10); B(4; 8); C(12; 0).
Gọi F là chi phí tập luyện.
Vì đạp xe không mất phí và tập tạ tốn chi phí 50 000 đồng/giờ nên với x giờ đạp xe và y giờ tập tạ thì tốn số tiền là : 0.x + 50 000y = 50 000y (đồng).
Vậy F =50 000y.
Tính các giá trị của F tại các đỉnh của tứ giác, ta có :
Tại O(0 ; 0) : F = 50 000.0 = 0;
Tại A(0 ; 10) : F = 50 000.10 = 500 000;
Tại B(4 ; 8) : F = 50 000. 8 = 400 000 ;
Tại C(12 ; 0) : F = 50 000 . 0 = 0 ;
F đạt giá trị nhỏ nhất bằng 0 tại O (0;0); C(12 ; 0).
Vậy Mạnh muốn chi phí tập luyện là ít nhất khi Mạnh không tập luyện cả hai môn thể thao trên hoặc Mạnh chỉ đạp xe 12 giờ và không tập tạ.
b) Gọi F’ là số calo tiêu hao. Khi đó F’ = 350x + 700y (calo).
Tính các giá trị của F’ tại các đỉnh của tứ giác, ta có :
Tại O(0 ; 0) : F’ = 350.0 + 700.0 = 0;
Tại A(0 ; 10) : F’ = 350.0 + 700.10 = 7 000;
Tại B(4 ; 8) : F’ = 350.4 + 700.8 = 7 000;
Tại C(12 ; 0) : F’ = 350.12 + 700.0 = 4200.
F’ đạt giá trị lớn nhất bằng 7 000 tại A(0 ; 10) và B(4 ; 8) .
Vậy Mạnh muốn số calo tiêu hao là lớn nhất thì Mạnh sẽ chỉ tập tạ trong 10 giờ hoặc đạp xe 4 giờ và tập tạ 8 giờ.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hai đường thẳng d: y = – x – 2 và d’: y = x + 1 chia mặt phẳng tọa độ thành bốn miền khác nhau (không tính hai đường thẳng d và d’) như hình vẽ bên. Để kí hiệu một trong bốn miền đó, người ta đã tạo nhãn:
Hãy đặt nhãn này vào miền phù hợp.
Câu hỏi:
Hai đường thẳng d: y = – x – 2 và d’: y = x + 1 chia mặt phẳng tọa độ thành bốn miền khác nhau (không tính hai đường thẳng d và d’) như hình vẽ bên. Để kí hiệu một trong bốn miền đó, người ta đã tạo nhãn:
Hãy đặt nhãn này vào miền phù hợp.
Trả lời:
Sau bài học này ta sẽ giải bài toán đặt ra bên trên như sau:
Đường thẳng d trên hình vẽ đi qua hai điểm có tọa độ (-2; 0) và (0; -2). Khi đó phương trình đường thẳng d là y = -x – 2.
Đường thằng d’ trên hình vẽ đi qua hai điểm có tọa độ (-1; 0) và (0; 1). Khi đó phương trình đường thẳng d’ là: y = x + 1
Tương ứng với dãn nhãn trên ta có hệ bất phương trình:
⟺
Ta biểu diễn miền nghiệm của các bất phương trình trong hệ:– Miền nghiệm của bất phương trình x + y + 2 < 0 là nửa mặt phẳng có bờ là đường thẳng d: y = -x – 2 (không tính bờ) và không chứa gốc tọa độ O(0; 0).
– Miền nghiệm của bất phương trình – x + y – 1 < 0 là nửa mặt phẳng có bờ là đường thẳng d’: y = x + 1 (không tính bờ) và chứa gốc tọa độ O(0; 0).
Vậy miền nghiệm của hệ bất phương trình là giao miền nghiệm của hai bất phương trình trong hệ (miền màu xanh trong hình sau).Vậy vị trí đúng của dán nhãn là:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Một người nông dân dự định quy hoạch x sào đất trồng cà tím và y sào đất trồng cà chua. Biết rằng người đó chỉ có tối đa 9 triệu đồng để mua hạt giống và giá tiền hạt giống cho mỗi sào đất trồng cà tím là 200 000 đồng, mỗi sào đất trồng cà chua là 100 000 đồng.
a) Viết các bất phương trình mô tả các điều kiện ràng buộc đối với x, y.
b) Cặp số nào sau đây thỏa mãn đồng thời tất cả các bất phương trình nêu trên?
(20; 40), (40; 20), (-30; 10).
Câu hỏi:
Một người nông dân dự định quy hoạch x sào đất trồng cà tím và y sào đất trồng cà chua. Biết rằng người đó chỉ có tối đa 9 triệu đồng để mua hạt giống và giá tiền hạt giống cho mỗi sào đất trồng cà tím là 200 000 đồng, mỗi sào đất trồng cà chua là 100 000 đồng.
a) Viết các bất phương trình mô tả các điều kiện ràng buộc đối với x, y.
b) Cặp số nào sau đây thỏa mãn đồng thời tất cả các bất phương trình nêu trên?
(20; 40), (40; 20), (-30; 10).Trả lời:
a) Vì x và y là số sào đất trồng cà tím và cà chua nên x ≥ 0 và y ≥ 0.
Số tiền để mua hạt giống cho 1 sào đất trồng cà tím là: 200 000 đồng = 0,2 (triệu đồng)
Số tiền để mua hạt giống cho x sào đất trồng cà tím là: 0,2x (triệu đồng).
Số tiền để mua hạt giống cho 1 sào đất trồng cà chua là: 100 000 đồng = 0,1 (triệu đồng).
Số tiền để mua hạt giống cho y sào đất trồng cà chua là: 0,1y (triệu đồng).
Số tiền để mua cả hai loại hạt giống là: 0,2x + 0,1y (triệu đồng).
Vì người nông dân có tối đa 9 triệu đồng để mua hạt giống nên ta có bất phương trình: 0,2x + 0,1y ≤ 9.
Vậy ta có ba bất phương trình mô tả các điều kiện ràng buộc đối với x, y là:
x ≥ 0.
y ≥ 0.
0,2x + 0,1y – 9 ≤ 0.
b)
– Với cặp số (20; 40) tương ứng với x = 20, y = 40.
Ta có: 20 > 0; 40 > 0 và 0,2 . 20 + 0,1 . 40 – 9 = -1 < 0
Suy ra, cặp số (20; 40) thỏa mãn cả ba bất phương trình trên.
– Với cặp số (40; 20) tương ứng với x = 40, y = 20.
Ta có: 40 > 0; 20 > 0 và 0,2 . 40 + 0,1 . 20 – 9 = 1 > 0
Do đó, cặp số (40; 20) không thỏa mãn bất phương trình 0,2x + 0,1y – 9 ≤ 0.
Suy ra, cặp số (40; 20) không thỏa mãn đồng thời cả ba bất phương trình trên.
– Với cặp số (-30; 10) tương ứng với x = -30, y = 10.
Ta có: -30 < 0; 10 > 0 và 0,2 . (-30) + 0,1 . 10 – 9 = -14 < 0
Do đó, cặp số (-30; 10) không thỏa mãn bất phương trình x ≥ 0.
Suy ra, cặp số (-30; 10) không thỏa mãn đồng thời cả ba bất phương trình trên.
Vậy chỉ có cặp số (20; 40) thỏa mãn cả ba bất phương trình trên.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hãy chỉ ra hai nghiệm của mỗi hệ bất phương trình trong Ví dụ 1.
Câu hỏi:
Hãy chỉ ra hai nghiệm của mỗi hệ bất phương trình trong Ví dụ 1.
Trả lời:
a) Hệ bất phương trình
+ Lấy cặp số (0; 0), ta có 3.0 + 0 – 1 = -1 ≤ 0 và 2.0 – 0 + 2 = 2 ≥ 0 là các mệnh đề đúng. Suy ra cặp số (0 ; 0) thỏa mãn cả hai bất phương trình trong hệ bất phương trình.
Do đó cặp số (0; 0) là một nghiệm của hệ bất phương trình .
+ Lấy cặp số (0; 1), ta có 3.0 + 1 – 1 = 0 ≤ 0 và 2.0 – 1 + 2 = 1 ≥ 0 là các mệnh đề đúng. Suy ra cặp số (0 ; 1) thỏa mãn cả hai bất phương trình trong hệ bất phương trình.
Do đó cặp số (0; 1) là một nghiệm của hệ bất phương trình .
Vậy hai cặp số (0; 0), (0; 1) là nghiệm của hệ bất phương trình .
c) Hệ bất phương trình
+ Lấy cặp số (0; 0), ta có 0 – 1 = -1 < 0 và 0 + 2 ≥ 0 là mệnh đề đúng. Suy ra cặp số (0; 0) thỏa mãn các bất phương trình của hệ bất phương trình.
Do đó, cặp số (0; 0) là một nghiệm của hệ bất phương trình
+ Lấy cặp số (1; 0), ta có 0 – 1 = -1 < 0 và 1 + 2 ≥ 0 là các mệnh đề đúng. Suy ra cặp số (1; 0) thỏa mãn các bất phương trình trong hệ bất phương trình.
Do đó, cặp số (1; 0) là một nghiệm của hệ bất phương trình .
Vậy hai cặp số (0; 0) và (1; 0) là nghiệm của hệ bất phương trìnhd) Hệ bất phương trình
+ Lấy cặp số (0; 0), thỏa mãn
Do đó cặp số (0; 0) là một nghiệm của hệ bất phương trình bất phương trình đã cho.
+ Lấy cặp số (1; 1), thỏa mãn
Do đó, cặp số (1; 1) là một nghiệm của hệ bất phương trình
Vậy hai cặp số (0; 0) và (1; 1) là các nghiệm của hệ bất phương trình====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hệ bất phương trình x+y−3≤0−2x+y+3≥0.
Miền nào trong Hình 1 biểu diễn phần giao các miền nghiệm của hai bất phương trình trong hệ đã cho ?
Câu hỏi:
Cho hệ bất phương trình .
Miền nào trong Hình 1 biểu diễn phần giao các miền nghiệm của hai bất phương trình trong hệ đã cho ?
Trả lời:
+ Xét miền nghiệm của bất phương trình x + y – 3 ≤ 0 :
Lấy điểm O(0 ; 0) không thuộc đường thẳng màu đỏ : x + y – 3 = 0, ta có : 0 + 0 – 3 = -3 < 0 nên miền nghiệm của bất phương trình x + y – 3 ≤ 0 là nửa mặt phẳng kể cả bờ là đường thẳng x + y – 3 = 0 và chứa gốc tọa tộ O (là phần không gạch chéo đỏ trong hình 1).
+ Xét miền nghiệm của bất phương trình -2x + y + 3 ≥ 0:
Lấy điểm O(0 ; 0) không thuộc đường thẳng màu xanh: -2x + y + 3 = 0, ta có : -2.0 + 0 + 3 = 3 > 0 nên miền nghiệm của bất phương trình -2x + y + 3 ≥ 0 là nửa mặt phẳng kể cả bờ là đường thẳng -2x + y + 3 = 0 và chứa gốc tọa độ O (là phần không gạch chéo xanh trong hình 1).
Vậy miền không gạch chéo (kể cả bờ) trong Hình 1 là miền biểu diễn phần giao các miền nghiệm của hai bất phương trình trong hệ====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Biểu diễn miền nghiệm của hệ bất phương trình :x+y≤82x+3y≤18x≥0y≥0.
Câu hỏi:
Biểu diễn miền nghiệm của hệ bất phương trình :
Trả lời:
Biểu diễn miền nghiệm của từng bất phương trình trên mặt phẳng Oxy.
– Xác định miền nghiệm D1 của bất phương trình x + y ≤ 8:
Lấy điểm O(0; 0) không thuộc đường thẳng d1: x + y = 8, ta có: 0 + 0 = 0 < 8. Do đó miền nghiệm của bất phương trình x + y ≤ 8 là nửa mặt phẳng bờ là đường thẳng d (kể cả đường thẳng d1) và chứa gốc tọa độ O (như hình 3).
– Xác định miền nghiệm D2 của bất phương trình 2x +3y ≤ 18:
Lấy điểm O(0; 0) không thuộc đường thẳng d2: 2x + 3y = 18, ta có: 2.0 + 3.0 = 0 < 18. Do đó miền nghiệm của bất phương trình 2x +3y ≤ 18 là nửa mặt phẳng bờ là đường thẳng d2 (kể cả đường thẳng d2) và chứa gốc tọa độ O (như hình 3).
– Xác định miền nghiệm D3 của bất phương trình x ≥ 0:
Miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng bên phải trục Oy và kể cả bờ Oy (như hình 3).
– Miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng bên trên trục Ox và kể cả bờ Ox (như hình 3).
Vậy, miền không tô màu (miền tứ giác OABC, bao gồm cả các cạnh) trong hình 3 là phần giao của các miền nghiệm của các bất phương trình trong hệ và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình đã cho====== **** mời các bạn xem câu tiếp bên dưới **** =====