Câu hỏi:
Trong mặt phẳng tọa độ Oxy cho các điểm A(11; –2), B(4; 10); C(-2; 2); D(7; 6); Hỏi G(3; 6) là trọng tâm của tam giác nào trong các tam giác sau đây?
A. Tam giác ABD
B. Tam giác ABC
C. Tam giác ACD
D. Tam giác BCD
Đáp án chính xác
Trả lời:
Đáp án đúng là D
+) Trọng tâm tam giác ABD là: \(\left( {\frac{{11 + 4 + 7}}{3};\frac{{ – 2 + 10 + 6}}{3}} \right) = \left( {\frac{{22}}{3};\frac{{14}}{3}} \right)\);
+) Trọng tâm tam giác ABC là: \(\left( {\frac{{11 + 4 + \left( { – 2} \right)}}{3};\frac{{ – 2 + 10 + 2}}{3}} \right) = \left( {\frac{{13}}{3};\frac{{10}}{3}} \right)\);
+) Trọng tâm tam giác ACD là: \(\left( {\frac{{11 + \left( { – 2} \right) + 7}}{3};\frac{{ – 2 + 2 + 6}}{3}} \right) = \left( {\frac{{16}}{3};2} \right)\);
+) Trọng tâm tam giác BCD là: \(\left( {\frac{{4 + \left( { – 2} \right) + 7}}{3};\frac{{10 + 2 + 6}}{3}} \right)\) = (3; 6).
Vậy G là trọng tâm tam giác BCD.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow u = – 5\overrightarrow i + 6\overrightarrow j .\) Khi đó tọa độ của vectơ \(\overrightarrow u \)là:
Câu hỏi:
Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow u = – 5\overrightarrow i + 6\overrightarrow j .\) Khi đó tọa độ của vectơ \(\overrightarrow u \)là:
A. \(\overrightarrow u \)(5; 6);
B. \(\overrightarrow u \)(-5; -6);
C. \(\overrightarrow u \)(6; -5);
D. \(\overrightarrow u \)(-5; 6).
Đáp án chính xác
Trả lời:
Đáp án đúng là D
Ta có \(\overrightarrow u = – 5\overrightarrow i + 6\overrightarrow j .\) Khi đó toạ độ của \(\overrightarrow u \) là \(\overrightarrow u \)(-5; 6).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong mặt phẳng tọa độ Oxy, cho B(1; 2) và C(3; -1). Độ dài \(\overrightarrow {BC} \) là:
Câu hỏi:
Trong mặt phẳng tọa độ Oxy, cho B(1; 2) và C(3; -1). Độ dài \(\overrightarrow {BC} \) là:
A. 5;
B. 3;
C. \(\sqrt {13} \);
Đáp án chính xác
D. \(\sqrt {15} \).
Trả lời:
Đáp án đúng là C
Ta có \(\overrightarrow {BC} \) = (3 – 1; -1 – 2) = (2; -3).
\( \Rightarrow \left| {\overrightarrow {BC} } \right| = \sqrt {{2^2} + {{\left( { – 3} \right)}^2}} = \sqrt {13} .\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2;1), B(3;3). Tìm điểm M(x;y) để OABM là một hình bình hành.
Câu hỏi:
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2;1), B(3;3). Tìm điểm M(x;y) để OABM là một hình bình hành.
A. M(1; 2);
Đáp án chính xác
B. M(-1; 2);
C.M(1; -2);
D. M(-1; -2)
Trả lời:
Đáp án đúng là A
Ta có hai vecto \(\overrightarrow {OA} \left( {2;1} \right),\overrightarrow {OB} \left( {3;3} \right)\) không cùng phương (vì \(\frac{2}{3} \ne \frac{1}{3}\)). Do đó các điểm O, A, B không cùng nằm trên một đường thẳng.
Suy ra các điểm O, A, B không thẳng hàng
Để OABM là hình bình hành khi và chỉ khi \(\overrightarrow {OA} = \overrightarrow {MB} \)
Ta có: \(\overrightarrow {OA} \left( {2;1} \right),\overrightarrow {MB} \left( {3 – x;3 – y} \right)\) nên
\(\left\{ \begin{array}{l}2 = 3 – x\\1 = 3 – y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right. \Rightarrow M\left( {1;2} \right).\)
Vậy điểm cần tìm là M(1;2).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong mặt phẳng tọa độ Oxy, cho các điểm M(1;3), N(4;2). Nhận xét nào sau đây đúng nhất về tam giác OMN.
Câu hỏi:
Trong mặt phẳng tọa độ Oxy, cho các điểm M(1;3), N(4;2). Nhận xét nào sau đây đúng nhất về tam giác OMN.
A. Tam giác OMN là tam giác đều;
B. Tam giác OMN vuông cân tại M;
Đáp án chính xác
C. Tam giác OMN vuông cân tại N;
D. Tam giác OMN vuông cân tại O.
Trả lời:
Đáp án đúng là B
Ta có M(1;3) \( \Rightarrow \overrightarrow {OM} \left( {1;3} \right) \Rightarrow OM = \sqrt {{1^2} + {3^2}} = \sqrt {10} .\)
Ta lại có N(4;2) \( \Rightarrow \overrightarrow {ON} \left( {4;2} \right) \Rightarrow ON = \sqrt {{4^2} + {2^2}} = \sqrt {20} = 2\sqrt 5 .\)
\( \Rightarrow \overrightarrow {MN} = \overrightarrow {ON} – \overrightarrow {OM} = \left( { – 3;1} \right) \Rightarrow MN = \sqrt {{{\left( { – 3} \right)}^2} + {1^2}} = \sqrt {10} \)
Xét tam giác OMN, có: \(OM = MN = \sqrt {10} \) nên tam giác OMN cân tại M.
Ta có: \(O{N^2} = {\left( {2\sqrt 5 } \right)^2} = 20,\)\(O{M^2} + M{N^2} = {\left( {\sqrt {10} } \right)^2} + {\left( {\sqrt {10} } \right)^2} = 20\)
\( \Rightarrow O{N^2} = O{M^2} + M{N^2}\)
Theo định lí Py – ta – go đảo suy ra tam giác OMN vuông tại O.
Do đó tam giác OMN vuông cân tại M.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có G là trọng tâm. Cho tọa độ các điểm A(1;3), B(2;4), G(-3;2). Tọa độ điểm C là:
Câu hỏi:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có G là trọng tâm. Cho tọa độ các điểm A(1;3), B(2;4), G(-3;2). Tọa độ điểm C là:
A. C(0; 3);
B. C(-6; -5);
C. C(-12; -1);
Đáp án chính xác
D. C(0; 9).
Trả lời:
Đáp án đúng là C
Vì G là trọng tâm tam giác ABC nên ta có:
\(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + x{ & _C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + y{ & _C}}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{ccccc}x{ & _C} = 3.{x_G} – \left( {{x_A} + {x_B}} \right) = 3.( – 3) – (1 + 2) = – 12\\y{ & _C} = 3{y_G} – ({y_A} + {y_B}) = 3.2 – \left( {3 + 4} \right) = – 1\end{array} \right.\)
⇒ G(-12; -1).====== **** mời các bạn xem câu tiếp bên dưới **** =====