Câu hỏi:
Tìm giao các tập nghiệm của hai bất phương trình – 3x2 + 7x + 10 ≥ 0 và – 2x2 – 9x + 11 > 0.
Trả lời:
Lời giải
Xét tam thức bậc hai f(x) = – 3x2 + 7x + 10, có a = – 3 < 0 và ∆ = 72 – 4.(– 3).10 = 169 > 0.
Do đó tam thức có hai nghiệm phân biệt là x1 = – 1 và x2 = \(\frac{{10}}{3}\).
Áp dụng định lí về dấu của tam thức bậc hai ta có:
f(x) < 0 khi x ∈ \(\left( { – \infty ; – 1} \right) \cup \left( {\frac{{10}}{3}; + \infty } \right)\);
f(x) > 0 khi x ∈ \(\left( { – 1;\frac{{10}}{3}} \right)\).
Suy ra tập nghiệm của bất phương trình – 3x2 + 7x + 10 ≥ 0 là S1 = \(\left[ { – 1;\frac{{10}}{3}} \right]\).
Xét tam thức bậc hai g(x) = – 2x2 – 9x + 11, có a = – 2 < 0 và ∆ = (– 9)2 – 4.(– 2).11 = 169 > 0.
Do đó tam thức có hai nghiệm phân biệt là x1 = 1 và x2 = \( – \frac{{11}}{2}\).
Áp dụng định lí về dấu của tam thức bậc hai ta có:
g(x) < 0 khi x ∈ \(\left( { – \infty ; – \frac{{11}}{2}} \right) \cup \left( {1; + \infty } \right)\);
g(x) > 0 khi x ∈ \(\left( { – \frac{{11}}{2};1} \right)\).
Suy ra tập nghiệm của bất phương trình – 2x2 – 9x + 11 > 0 là S2 = \(\left( { – \frac{{11}}{2};1} \right)\).
Đặt S = S1 ∩ S2 = \(\left[ { – 1;\frac{{10}}{3}} \right] \cap \left( { – \frac{{11}}{2};1} \right)\).
Ta có hình vẽ sau:
Vậy giao của hai tập nghiệm của hai bất phương trình trên là S = [ – 1; 1).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong các bất phương tình sau, bất phương trình nào không là bất phương trình bậc nhất một ẩn?
A. – 2×2 + 3x < 0;
B. 0,5y2 – \(\sqrt 3 \)(y – 2) ≤ 0;
C. x2 – 2xy – 3 ≥ 0;
D. \(\sqrt 2 \)x2 – 3 ≥ 0.
Câu hỏi:
Trong các bất phương tình sau, bất phương trình nào không là bất phương trình bậc nhất một ẩn?
A. – 2x2 + 3x < 0;
B. 0,5y2 – \(\sqrt 3 \)(y – 2) ≤ 0;
C. x2 – 2xy – 3 ≥ 0;
D. \(\sqrt 2 \)x2 – 3 ≥ 0.Trả lời:
Lời giải
Đáp án đúng là C
Xét bất phương trình – 2x2 + 3x < 0 là bất phương trình bậc hai một ẩn x. Do đó A sai.
Xét bất phương trình 0,5y2 – \(\sqrt 3 \)(y – 2) ≤ 0 ⇔ 0,5y2 – \(\sqrt 3 \)y + 2\(\sqrt 3 \) ≤ 0 là bất phương trình bậc hai một ẩn y. Do đó B sai.
Xét bất phương trình x2 – 2xy – 3 ≥ 0 là bất phương trình bậc hai nhưng lại có hai ẩn x và y. Do đó C đúng.
Xét bất phương trình\(\sqrt 2 \)x2 – 3 ≥ 0 là bất phương trình bậc hai một ẩn x. Do đó D sai.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tập nghiệm của bất phương trình – x2 + 3x + 18 ≥ 0 là:
A. [ – 3; 6];
B. (– 3; 6);
C. (– ∞; – 3) ∪ (6; +∞);
D. (– ∞; – 3] ∪ [6; +∞).
Câu hỏi:
Tập nghiệm của bất phương trình – x2 + 3x + 18 ≥ 0 là:
A. [ – 3; 6];
B. (– 3; 6);
C. (– ∞; – 3) ∪ (6; +∞);
D. (– ∞; – 3] ∪ [6; +∞).Trả lời:
Lời giải
Đáp án đúng là A
Xét f(x) = – x2 + 3x + 18 là một tam thức bậc hai có a = – 1 < 0 và ∆ = 32 – 4.(– 1).18 = 81 > 0.
Do đó f(x) có hai nghiệm phân biệt là x1 = – 3 và x2 = 6.
Theo định lí về dấu tam thức bậc hai, ta có:
f(x) > 0 khi x ∈ (– 3; 6);
f(x) < 0 khi x ∈ (–∞; – 3) ∪ (6; +∞);
Suy ra f(x) ≥ 0 khi x ∈ [– 3; 6].
Vậy tập nghiệm của bất phương trình là S = [– 3; 6].====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Dựa vào đồ thị hàm số bậc hai y = f(x) trong mỗi Hình 18a, 18b, 18c, hãy viết tập nghiệm các bất phương trình sau: f(x) > 0; f(x) < 0; f(x) ≥ 0 và f(x) ≤ 0.
Câu hỏi:
Dựa vào đồ thị hàm số bậc hai y = f(x) trong mỗi Hình 18a, 18b, 18c, hãy viết tập nghiệm các bất phương trình sau: f(x) > 0; f(x) < 0; f(x) ≥ 0 và f(x) ≤ 0.
Trả lời:
Lời giải
+) Hình 18a):
Quan sát đồ thị hàm số, ta thấy:
Đồ thị hàm số nằm hoàn toàn phía dưới trục hoành với mọi x ∈ ℝ.
Do đó:
f(x) < 0 và f(x) ≤ 0 luôn đúng với mọi x ∈ ℝ.
f(x) > 0; f(x) ≥ 0 và vô nghiệm.
Vậy tập nghiệm của các bất phương trình f(x) > 0 và f(x) ≥ 0 là \(\emptyset \), tập nghiệm của bất phương trình f(x) < 0 và f(x) ≤ 0 là ℝ.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Dựa vào đồ thị hàm số bậc hai y = f(x) trong mỗi Hình 18b, 18c, hãy viết tập nghiệm các bất phương trình sau: f(x) > 0; f(x) < 0; f(x) ≥ 0 và f(x) ≤ 0.
Câu hỏi:
Dựa vào đồ thị hàm số bậc hai y = f(x) trong mỗi Hình 18b, 18c, hãy viết tập nghiệm các bất phương trình sau: f(x) > 0; f(x) < 0; f(x) ≥ 0 và f(x) ≤ 0.
Trả lời:
Lời giải
+) Hình 18b):
Quan sát đồ thị hàm số, ta thấy:
Với x ∈ (1; 3) hàm số nằm trên trục hoành hay f(x) > 0.
Với x < 1 hoặc x > 3 đồ thị hàm số nằm phía dưới trục hoành hay f(x) < 0.
Đồ thị hàm số cắt trục hoành tại x = 1 hoặc x = 3.
Do đó:
f(x) > 0 khi x ∈ (1; 3).
f(x) < 0 khi x ∈ (– ∞; 1) ∪ (3; +∞).
f(x) ≥ 0 khi x ∈ [1; 3].
f(x) ≤ 0 khi x ∈ (– ∞; 1] ∪ [3; +∞).
Vậy tập nghiệm của các bất phương trình f(x) > 0; f(x) < 0; f(x) ≥ 0; f(x) ≤ 0 lần lượt là (1; 3); (– ∞; 1) ∪ (3; +∞); [1; 3]; (– ∞; 1] ∪ [3; +∞).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Dựa vào đồ thị hàm số bậc hai y = f(x) trong Hình 18c, hãy viết tập nghiệm các bất phương trình sau: f(x) > 0; f(x) < 0; f(x) ≥ 0 và f(x) ≤ 0.
Câu hỏi:
Dựa vào đồ thị hàm số bậc hai y = f(x) trong Hình 18c, hãy viết tập nghiệm các bất phương trình sau: f(x) > 0; f(x) < 0; f(x) ≥ 0 và f(x) ≤ 0.
Trả lời:
Lời giải
+) Hình 18c):
Quan sát đồ thị hàm số, ta thấy:
Đồ thị hàm số cắt trục hoành tại x = 2.
Với x ≠ 2 hàm số nằm dưới trục hoành hay f(x) < 0.
Do đó:
f(x) > 0 vô nghiệm.
f(x) < 0 khi x ∈ ℝ \ {2}.
f(x) ≥ 0 khi x = 2.
f(x) ≤ 0 khi x ∈ ℝ.
Vậy tập nghiệm của các bất phương trình f(x) > 0; f(x) < 0; f(x) ≥ 0; f(x) ≤ 0 lần lượt là \(\emptyset \); ℝ \ {2}; {2}; ℝ.====== **** mời các bạn xem câu tiếp bên dưới **** =====