Câu hỏi:
Tập xác định của hàm số \(y = \frac{2}{{\sqrt {5 – x} }}\) là
A. D = ℝ\{5};
B. D = (– ∞; 5);
Đáp án chính xác
C. D = (– ∞; 5];
D. D = (5; + ∞).
Trả lời:
Đáp án đúng là: B
Điều kiện xác định của biểu thức \(\frac{2}{{\sqrt {5 – x} }}\) là 5 – x > 0 \( \Leftrightarrow \)x < 5.
Vậy tập xác định của hàm số là: D = (– ∞; 5).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tập xác định của hàm số \(y = \sqrt {{x^2} – 3x – 4} \) là:
Câu hỏi:
Tập xác định của hàm số \(y = \sqrt {{x^2} – 3x – 4} \) là:
A. \(\left( { – \infty ; – 1} \right) \cup \left( {4; + \infty } \right)\);
B. [- 1; 4];
C. (- 1; 4);
D. \(\left( { – \infty ; – 1} \right] \cup \left[ {4; + \infty } \right)\).
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
Hàm số xác định khi x2 – 3x – 4 ≥ 0\( \Leftrightarrow \left[ \begin{array}{l}x \le – 1\\x \ge 4\end{array} \right.\).
Vậy tập xác định của hàm số là D = \(\left( { – \infty ; – 1} \right] \cup \left[ {4; + \infty } \right)\).
Đáp án đúng là: D====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tìm tập xác định D của hàm số \(y = \frac{{3x – 1}}{{2x – 2}}\).
Câu hỏi:
Tìm tập xác định D của hàm số \(y = \frac{{3x – 1}}{{2x – 2}}\).
A. D = ℝ;
B. D = (1; + ∞);
C. D = ℝ\{1};
Đáp án chính xác
D. D = [1; + ∞).
Trả lời:
Đáp án đúng là: C
Hàm số xác định khi 2x – 2 ≠ 0 ⟺ x ≠ 1.
Vậy tập xác định của hàm số là D = ℝ\{1}.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số f(x) = 4 – 3x. Khẳng định nào sau đây đúng?
Câu hỏi:
Cho hàm số f(x) = 4 – 3x. Khẳng định nào sau đây đúng?
A. Hàm số đồng biến trên \(\left( { – \infty ;\frac{4}{3}} \right)\);
B. Hàm số nghịch biến trên \(\left( {\frac{4}{3}; + \infty } \right)\);
Đáp án chính xác
C. Hàm số đồng biến trên ℝ;
D. Hàm số đồng biến trên \(\left( {\frac{3}{4}; + \infty } \right)\).
Trả lời:
Đáp án đúng là: B
TXĐ: D = ℝ.
Với mọi x1; x2 ∈ ℝ và x1 < x2, ta có
f(x1) – f(x2) = (4 – 3x1) – (4 – 3x2) = – 3(x1 – x2) > 0
Suy ra f(x1) > f(x2).
Do đó, hàm số nghịch biến trên ℝ.
Mà \(\left( {\frac{4}{3}; + \infty } \right) \subset \mathbb{R}\) nên hàm số cũng nghịch biến trên \(\left( {\frac{4}{3}; + \infty } \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số: \(y = \frac{{x – 1}}{{2{x^2} – 3x + 1}}\). Trong các điểm sau đây, điểm nào thuộc đồ thị hàm số:
Câu hỏi:
Cho hàm số: \(y = \frac{{x – 1}}{{2{x^2} – 3x + 1}}\). Trong các điểm sau đây, điểm nào thuộc đồ thị hàm số:
A. M(2; 3);
B. N(0; – 1);
Đáp án chính xác
C. P(12; – 12);
D. Q(- 1; 0).
Trả lời:
Đáp án đúng là: B
Đáp án A: M(2; 3) xét y(2) = \(\frac{{2 – 1}}{{{{2.2}^2} – 3.2 + 1}} = \frac{1}{3}\) ≠ 3 nên M không thuộc đồ thị hàm số.
Đáp án B: N(0; – 1) xét y(0) = \(\frac{{0 – 1}}{{{{2.0}^2} – 3.0 + 1}} = – 1\) nên N thuộc đồ thị hàm số.
Đáp án C: P(12; – 12) xét y(12) = \(\frac{{12 – 1}}{{{{2.12}^2} – 3.12 + 1}} = \frac{1}{{23}}\) ≠ – 12 nên P không thuộc đồ thị hàm số.
Đáp án D: Q(-1; 0) xét y(1) = \(\frac{{ – 1 – 1}}{{2.{{( – 1)}^2} – 3.( – 1) + 1}} = – \frac{1}{3}\) ≠ 0 nên Q không thuộc đồ thị hàm số.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số y = f(x) = x3 – 6×2 + 11x – 6. Khẳng định nào sau đây sai:
Câu hỏi:
Cho hàm số y = f(x) = x3 – 6x2 + 11x – 6. Khẳng định nào sau đây sai:
A. f(1) = 0;
B. f(2) = 0;
C. f(– 2) = – 60;
D. f(– 4) = – 24.
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
Ta có:
f(1) = 13 – 6.12 + 11.1 – 6 = 0. Do đó đáp án A đúng
f(2) = 23 – 6.22 + 11.2 – 6 = 0. Do đó đáp án B đúng
f(– 2) = (– 2)3 – 6.( – 2)2 + 11.( – 2) – 6 = – 60. Do đó đáp án C đúng.
f(– 4) = (– 4)3 – 6.( – 4)2 + 11.( – 4) – 6 = – 210. Do đó đáp án D sai.====== **** mời các bạn xem câu tiếp bên dưới **** =====