Câu hỏi:
Tam giác ABC vuông cân tại A có AB = 2a. Tính bán kính r của đường tròn nội tiếp đã cho.
A. 2a – a\(\sqrt 2 \);
Đáp án chính xác
B. 2a + a\(\sqrt 2 \);
C. a + 2a\(\sqrt 2 \);
D. − a + a\(\sqrt 2 \).
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: A.
Tam giác ABC vuông cân tại A nên AB = AC = 2a.
Áp dụng định lí Pythagore ta tính được: BC = \(\sqrt {A{B^2} + A{C^2}} \)= 2a\(\sqrt 2 \).
Diện tích tam giác ABC là: S = \(\frac{1}{2}\)AB.AC = 2a2.
Nửa chu vi tam giác ABC là: p = \(\frac{1}{2}\)(AB + AC + BC) = 2a + a\(\sqrt 2 \).
Mặt khác: S = p.r \( \Rightarrow \)r = \(\frac{S}{p} = \frac{{2{a^2}}}{{2a + a\sqrt 2 }}\)= 2a – a\(\sqrt 2 \).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tam giác ABC có BC = 8 và \(\widehat A = 30^\circ \). Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Câu hỏi:
Tam giác ABC có BC = 8 và \(\widehat A = 30^\circ \). Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Trả lời:
Hướng dẫn giải:
Ta áp dụng công thức \(\frac{a}{{\sin A}} = 2R\)
\( \Rightarrow R = \frac{a}{{2\sin A}} = \frac{{BC}}{{2\sin A}} = \frac{8}{{2\sin 30^\circ }} = \frac{8}{{2.\frac{1}{2}}} = 8\).
Vậy bán kính đường tròn ngoại tiếp tam giác ABC là R = 8.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tam giác ABC có AB = 6, AC = 8 và \(\widehat {BAC} = 60^\circ \). Tính bán kính r của đường tròn nội tiếp tam giác đã cho.
Câu hỏi:
Tam giác ABC có AB = 6, AC = 8 và \(\widehat {BAC} = 60^\circ \). Tính bán kính r của đường tròn nội tiếp tam giác đã cho.
Trả lời:
Hướng dẫn giải:
Theo địn lí côsin ta có: \(B{C^2} = A{B^2} + A{C^2} – 2.AB.AC.\cos A\)
Thay số: \(B{C^2} = {6^2} + {8^2} – 2.6.8.\cos 60^\circ = 52\)
\( \Rightarrow BC = \sqrt {52} \).
Do đó ta có nửa chu vi tam giác ABC là:
\(p = \frac{1}{2}\left( {AB + AC + BC} \right) = \frac{1}{2}\left( {6 + 8 + \sqrt {52} } \right) = 7 + \sqrt {13} \).
Diện tích tam giác ABC là:
\(S = \sqrt {p\left( {p – AB} \right)\left( {p – AC} \right)\left( {p – BC} \right)} = 12\sqrt 3 \).
Mặt khác \(S = p.r \Rightarrow r = \frac{S}{p} = \frac{{12\sqrt 3 }}{{7 + \sqrt {13} }} \approx 1,96\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tam giác ABC có a = 20, b = 15, c = 9. Bán kính r của đường tròn nội tiếp tam giác đã cho gần với giá trị nào dưới đây?
Câu hỏi:
Tam giác ABC có a = 20, b = 15, c = 9. Bán kính r của đường tròn nội tiếp tam giác đã cho gần với giá trị nào dưới đây?
A. 1,38;
B. 2,75;
C. 4,38;
D. 5,75.
Đáp án chính xác
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: D.
Ta có \(p = \frac{1}{2}\left( {a + b + c} \right) = \frac{1}{2}\left( {20 + 15 + 9} \right) = 22\).
Do đó diện tích tam giác ABC là:
\(S = \sqrt {p\left( {p – a} \right)\left( {p – b} \right)\left( {p – c} \right)} = \sqrt {22.\left( {22 – 20} \right).\left( {22 – 15} \right).\left( {22 – 9} \right)} = 2\sqrt {1001} \).
Lại có \(S = p.r \Rightarrow r = \frac{S}{p} = \frac{{2\sqrt {1001} }}{{22}} \approx 5,75\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC có AB = 4, AC = 8 và \(\widehat A = 30^\circ \). Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Câu hỏi:
Cho tam giác ABC có AB = 4, AC = 8 và \(\widehat A = 30^\circ \). Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
A. 7;
B. 6;
C. 5;
Đáp án chính xác
D. 4.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: C.
Tam giác ABC có: \(B{C^2} = A{B^2} + A{C^2} – 2AB.AC.\cos A\)
Thay số: \(B{C^2} = {4^2} + {8^2} – 2.4.8.\cos 30^\circ = 80 – 32\sqrt 3 \)
Do đó: BC ≈ 5.
Ta có: \(\frac{{BC}}{{\sin A}} = 2R\)\( \Rightarrow R = \frac{{BC}}{{2\sin A}} \approx \frac{5}{{2.\sin 30^\circ }} = 5\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC biết a = 21 cm, b = 17 cm, c = 10. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Câu hỏi:
Cho tam giác ABC biết a = 21 cm, b = 17 cm, c = 10. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
A. 5,625;
B. 10,625;
Đáp án chính xác
C. 15,625;
D. 20,625.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: B.
Nửa chu vi tam giác ABC là: \(p = \frac{1}{2}\left( {a + b + c} \right) = \frac{1}{2}\left( {21 + 17 + 10} \right) = 24\).
Do đó diện tích tam giác ABC bằng:
\(S = \sqrt {p\left( {p – a} \right)\left( {p – b} \right)\left( {p – c} \right)} = 84\)
Mặt khác \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{21.17.10}}{{4.84}} = 10,625\).====== **** mời các bạn xem câu tiếp bên dưới **** =====