Câu hỏi:
Một người kĩ sư thiết kế một đường hầm một chiều có mặt cắt là một nửa hình elip, chiều rộng của hầm là 12 m, khoảng cách từ điểm cao nhất của elip so với mặt đường là 3 m. Người kĩ sư này muốn đưa ra cảnh báo cho các loại xe có thể đi qua hầm. Biết rằng những loại xe tải có chiều cao 2,8 m thì có chiều rộng không quá 3 m. Hỏi chiếc xe tải có chiều cao 2,8 m có thể đi qua hầm được không?
Trả lời:
Hướng dẫn giải
Giả sử phương trình chính tắc của (E) là: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) (trong đó a > b > 0).
Vì chiều rộng của hầm là 12 m nên OA = 12 : 2 = 6 (m), do đó điểm A có tọa độ (6; 0).
Khoảng cách từ điểm cao nhất của elip so với mặt đường là 3 m nên OB = 3 m, do đó điểm B có tọa độ (0; 3).
Do các điểm B(0; 3) và A(6; 0) thuộc (E) nên thay vào phương trình của (E) ta có:
\(\frac{{{0^2}}}{{{a^2}}} + \frac{{{3^2}}}{{{b^2}}} = 1 \Rightarrow {b^2} = {3^2} = 9\)
\(\frac{{{6^2}}}{{{a^2}}} + \frac{{{0^2}}}{{{b^2}}} = 1 \Rightarrow {a^2} = {6^2} = 36\)
Suy ra phương trình của (E) là
\(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1\).
Với những xe tải có chiều cao 2,8 m, chiều rộng của xe tải là 3 m, nếu xe chạy chính giữa hầm thì khoảng cách từ tâm xe tới mỗi bên xe khoảng 3 : 2 = 1,5 m, tương ứng với x = 1,5. Thay vào phương trình của elip để ta tìm ra độ cao y của điểm M (có hoành độ bằng 1,5 thuộc (E)) so với trục Ox.
\(\frac{{{x_M}^2}}{{36}} + \frac{{{y_M}^2}}{9} = 1\)
Suy ra: \({y_M} = 3.\sqrt {1 – \frac{{x_M^2}}{{36}}} = 3.\sqrt {1 – \frac{{{{1,5}^2}}}{{36}}} \approx 2,905 > 2,8\)
Kết luận: Ô tô tải có thể đi được qua hầm, tuy nhiên cần khuyến cáo ô tô phải đi vào chính giữa hầm.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho elip (E) có phương trình \(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{16}} = 1\). Tìm tiêu điểm và tiêu cự của elip.
Câu hỏi:
Cho elip (E) có phương trình \(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{16}} = 1\). Tìm tiêu điểm và tiêu cự của elip.
Trả lời:
Hướng dẫn giải
Dựa vào phương trình chính tắc \(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{16}} = 1\) của (E) ta có
\(\left\{ {\begin{array}{*{20}{c}}{{a^2} = 36}\\{{b^2} = 16}\end{array}} \right. \Rightarrow c = \sqrt {{a^2} – {b^2}} = 2\sqrt 5 \)
Vậy (E) có hai tiêu điểm là: \({F_1}\left( { – 2\sqrt 5 ;0} \right),{F_2}\left( {2\sqrt 5 ;0} \right)\)và có tiêu cự là: \(2c = 4\sqrt 5 \).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hypebol (H) có phương trình\(\frac{{{x^2}}}{{16}} – \frac{{{y^2}}}{{20}} = 1\). Tìm tiêu điểm và tiêu cự của hypebol.
Câu hỏi:
Cho hypebol (H) có phương trình\(\frac{{{x^2}}}{{16}} – \frac{{{y^2}}}{{20}} = 1\). Tìm tiêu điểm và tiêu cự của hypebol.
Trả lời:
Hướng dẫn giải
Dựa vào phương trình chính tắc \(\frac{{{x^2}}}{{16}} – \frac{{{y^2}}}{{20}} = 1\) của (H) ta có
\(\left\{ {\begin{array}{*{20}{c}}{{a^2} = 16}\\{{b^2} = 20}\end{array}} \right. \Rightarrow c = \sqrt {{a^2} + {b^2}} = 6\)
Vậy (H) có hai tiêu điểm là F1 (–6; 0), F2(6; 0) và có tiêu cự là 2c = 12.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho parabol (P) có phương trình y2 = 4x. Tìm tiêu điểm và đường chuẩn của parabol.
Câu hỏi:
Cho parabol (P) có phương trình y2 = 4x. Tìm tiêu điểm và đường chuẩn của parabol.
Trả lời:
Hướng dẫn giải
Dựa vào phương trình chính tắc y2 = 4x của (P) ta có:
2p = 4 ⇔ p = 2 ⇔ \(\frac{p}{2} = 1\) .
Vậy (P) có tiêu điểm là F(1; 0) và có đường chuẩn là Δ: x = –1.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Viết phương trình chính tắc của elip (E), biết (E) đi qua điểm A(6; 0) và có tiêu cự bằng 8.
Câu hỏi:
Viết phương trình chính tắc của elip (E), biết (E) đi qua điểm A(6; 0) và có tiêu cự bằng 8.
Trả lời:
Hướng dẫn giải
Phương trình chính tắc của (E) có dạng \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) (trong đó a > b > 0)
Vì (E) đi qua điểm A(6; 0) nên ta có \(\frac{{{6^2}}}{{{a^2}}} + \frac{{{0^2}}}{{{b^2}}} = 1\) ⇔ a2 = 62
Do (E) có tiêu cự là 2c = 8 nên ta có c = 4 ⇒ b2 = a2 – c2 = 62 – 42 = 20.
Vậy phương trình chính tắc của (E) là: \(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{20}} = 1\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Viết phương trình chính tắc của hypebol (H), biết (H) đi qua điểm \(M\left( {3\sqrt 2 ; – 4} \right)\)và có một tiêu điểm là F2(5; 0).
Câu hỏi:
Viết phương trình chính tắc của hypebol (H), biết (H) đi qua điểm \(M\left( {3\sqrt 2 ; – 4} \right)\)và có một tiêu điểm là F2(5; 0).
Trả lời:
Hướng dẫn giải
Phương trình chính tắc của (H) có dạng: \(\frac{{{x^2}}}{{{a^2}}} – \frac{{{y^2}}}{{{b^2}}} = 1\) (trong đó a, b > 0)
Do (H) có một tiêu điểm là F2(5; 0) nên ta có:
c = 5 ⇒ b2 + a2 = c2 = 25 ⇔ a2 = 25 – b2
Vì (H) đi qua điểm \(M\left( {3\sqrt 2 ;4} \right)\)nên ta có
\(\frac{{{{\left( {3\sqrt 2 } \right)}^2}}}{{{a^2}}} – \frac{{{4^2}}}{{{b^2}}} = 1 \Leftrightarrow \frac{{18}}{{{a^2}}} – \frac{{16}}{{{b^2}}} = 1\) (1)
Đặt t = b2 (t > 0) ⇒ a2 = 25 – t. Thay vào (1) ta được
\(\frac{{18}}{{25 – t}} – \frac{{16}}{t} = 1\)
⇒ 18t – 16(25 – t) = (25 – t)t
⇔ 18t – 400 + 16t = 25t – t2
⇔ t2 + 9t – 400 = 0
⇔ t = 16 (thỏa mãn) hoặc t = –25 (không thỏa mãn)
Do đó, b2 = t = 16, a2 = 25 – t = 9.
Vậy phương trình chính tắc của (H) là: \(\frac{{{x^2}}}{9} – \frac{{{y^2}}}{{16}} = 1\).====== **** mời các bạn xem câu tiếp bên dưới **** =====