Câu hỏi:
Một công ty dự định sản xuất hai loại sản phẩm I và II. Các sản phẩm này được chế tạo từ hai loại nguyên liệu A, B. Số kilôgam dự trữ từng loại nguyên liệu và số kilôgam từng loại cần dùng để sản xuất 1 kg sản phẩm được cho trong bảng sau :
Loại nguyên liệu
Số kilôgam nguyên liệu dự trữ
Số kilôgam nguyên liệu cần dùng sản xuất 1 kg sản phẩm
I
II
A
8
2
1
B
12
2
2
Công ty đó nên sản xuất bao nhiêu sản phẩm mỗi loại để tiền lãi thu về lớn nhất ? Biết rằng, mỗi kilogam sản phẩm loại I lãi 10 triệu đồng, mỗi sản phẩm loại II lãi 20 triệu đồng.
A. 5 kg loại I và 1 kg loại II;
B. 5 kg loại I và 5 kg loại II;
C. 6 kg loại I và 0 kg loại II;
D. 0 kg loại I và 6 kg loại II;
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
Gọi x (kg) là khối lượng sản phẩm I, y (kg) là khối lượng sản phẩm II mà công ty sản xuất. Hiển nhiên x ≥ 0 và y ≥ 0.
Số nguyên liệu A cần dùng để sản xuất ra x kg sản phẩm I là 2x (kg).
Số nguyên liệu A cần dùng để sản xuất ra y kg sản phẩm II là y (kg).
Tổng nguyên liệu loại I cần dùng là 2x + y (kg).
Mặt khác, số nguyên liệu dự trữ loại I là 8 kg, nên ta có bất phương trình : 2x + y ≤ 8.
Tương tự, số nguyên liệu B cần dùng để sản xuất ra x kg sản phẩm I là 2x (kg).
Số nguyên liệu B cần dùng để sản xuất ra y kg sản phẩm II là 2y (kg).
Tổng nguyên liệu loại II cần dùng là 2x + 2y (kg).
Số nguyên liệu dự trữ loại II là 12 kg, nên ta có bất phương trình : 2x + 2y ≤ 12, tức là x + y ≤ 6.
Vậy ta có hệ bất phương trình sau :
\(\left\{ {\begin{array}{*{20}{c}}{x \ge 0}\\{y \ge 0}\\{2x{\rm{ }} + {\rm{ }}y \le 8}\\{x{\rm{ }} + {\rm{ }}y \le 6}\end{array}} \right.\)
Biểu diễn miền nghiệm của hệ này trên mặt phẳng tọa độ Oxy ta được hình sau :
Miền nghiệm của hệ là miền tứ giác OMPN (bao gồm các cạnh) với các đỉnh O(0 ; 0) ; M (0 ; 6) ; P(2 ; 4) ; N(4 ; 0).
Gọi F là số tiền lãi thu được (đơn vị : triệu đồng) , ta có :
Tiền lãi thu được từ x kg sản phẩm loại I là : 10x (triệu đồng) .
Tiền lãi thu được từ y kg sản phẩm loại II là : 20y (triệu đồng).
Khi đó F = 10x + 20y
Tính giá trị của F tại các đỉnh của tứ giác OMPN:
Tại O (0 ; 0) : F = 10.0 +20.0 = 0 ;
Tại M(0 ; 6) : F = 10 . 0 + 20 . 6 = 120 ;
Tại P(2 ; 4) : F = 10 . 2 + 20 . 4= 90;
Tại N(4 ; 0): F = 10 . 4 + 20 . 0 = 40.
F đạt lớn nhất bằng 120 tại M(0 ; 6).
Vậy công ty nên sản xuất 0 kg sản phẩm loại I và 6 kg sản phẩm loại II để thu về tiền lãi lớn nhất.
Ta chọn đáp án D.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Bạn Lan để dành được 300 nghìn đồng. Trong một đợt ủng hộ học sinh khó khăn, bạn Lan đã ủng hộ x tờ tiền loại 10 nghìn đồng, y tờ tiền loại 20 nghìn đồng từ tiền để dành của mình. Trong các bất phương trình sau, bất phương trình nào diễn tả giới hạn về tổng số tiền mà bạn Lan đã ủng hộ.
Câu hỏi:
Bạn Lan để dành được 300 nghìn đồng. Trong một đợt ủng hộ học sinh khó khăn, bạn Lan đã ủng hộ x tờ tiền loại 10 nghìn đồng, y tờ tiền loại 20 nghìn đồng từ tiền để dành của mình. Trong các bất phương trình sau, bất phương trình nào diễn tả giới hạn về tổng số tiền mà bạn Lan đã ủng hộ.
A. x + y < 300 ;>
B. 10x + y < 300 ;>
C. 10x + 20y > 300;
D. 10x + 20y ≤ 300.
Đáp án chính xác
Trả lời:
Đáp án đúng là: DSố tiền mệnh giá 10 nghìn đồng là: 10x (nghìn đồng)Số tiền mệnh giá 20 nghìn đồng là: 20y (nghìn đồng) Tổng số tiền bạn Lan đã ủng hộ là: 10x + 20y (nghìn đồng).Vì tổng số tiền Lan ủng hộ không vượt quá số tiền Lan để dành được là 300 nghìn đồng nên ta có bất phương trình: 10x + 20y ≤ 300.Vậy ta chọn đáp án D.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Câu hỏi:
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
A. x2 < 3x – 7y;>
B. x + 3y2 ≥0;
C. –22x + y ≤4;
Đáp án chính xác
D. 0x – 0y ≤ 5.
Trả lời:
Đáp án đúng là: Cx2 < 3x – 7y và x + 3y2> ≥ 0 là bất phương trình hai ẩn bậc hai; 0x – 0y ≤ 5 có hệ số của x và y đồng thời bằng 0. Vì vậy, A, B, D không phải là bất phương trình bậc nhất hai ẩn.Ta có: –22x + y ≤ 4 ⇔ –4x + y ≤ 4.Vì –4x + y ≤ 4 có dạng bất phương trình bậc nhất hai ẩn với a = –4; b = 1; c = 4 nên đáp án C đúng.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Bất phương trình nào tương đương với bất phương trình 3x – y > 7(x – 4y) + 1?
Câu hỏi:
Bất phương trình nào tương đương với bất phương trình 3x – y > 7(x – 4y) + 1?
A. 4x – 27y + 1 > 0;
B. 4x – 27y + 1 ≥ 0;
C. 4x – 27y < –1;>
Đáp án chính xác
D. 4x – 27y + 1 ≤ 0.
Trả lời:
Đáp án đúng là: CTa có : 3x – y > 7(x – 4y) + 1 ⇔ 3x – y > 7x – 28y + 1 ⇔ 0 > 7x – 3x – 28y + y + 1 ⇔ 4x – 27y + 1 < 0 ⇔ 4x – 27y < –1.Vậy ta chọn phương án C.>>
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
Câu hỏi:
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
A. x2 + y > 0;
B. x2 + 3y2 = 2;
C. –x + y3 ≤ 0;
D. x – y < 1.>
Đáp án chính xác
Trả lời:
Đáp án đúng là: Dx2 + y > 0 là bất phương trình bậc hai. Do đó đáp án A sai.x2 + 3y2 = 2 là phương trình bậc hai. Do đó đáp án B sai.–x + y3 ≤ 0 là bất phương trình bậc ba. Do đó đáp án C sai.x – y < 1 có dạng bất phương trình bậc nhất hai ẩn (ẩn x và ẩn y) với: a = 1; b = –1; c = 1. Do đó đáp án D đúng.>
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Giá trị nhỏ nhất Fmin của biểu thức F= –x + y trên miền xác định bởi hệ \(\left\{ {\begin{array}{*{20}{c}}{ – 2x + y \ge 2}\\{y – x \le 4}\\{x + 2y \ge 5}\end{array}} \right.\) là:
Câu hỏi:
Giá trị nhỏ nhất Fmin của biểu thức F= –x + y trên miền xác định bởi hệ \(\left\{ {\begin{array}{*{20}{c}}{ – 2x + y \ge 2}\\{y – x \le 4}\\{x + 2y \ge 5}\end{array}} \right.\) là:
A. Fmin = \(\frac{{11}}{5}\);
Đáp án chính xác
B. Fmin = 0;
C. Fmin = 2;
D. Fmin = 4.
Trả lời:
Đáp án đúng là: A \(\left\{ {\begin{array}{*{20}{c}}{ – 2x + y \ge 2}\\{y – x \le 4}\\{x + 2y \ge 5}\end{array}} \right.\)Ta biểu diễn miền nghiệm của hệ đã cho trên mặt phẳng tọa độ, ta được hình ảnh sau:Khi đó miền tam giác EGH (bao gồm cả biên) là miền nghiệm của hệ bất phương trình đã cho.Các đỉnh E, H, G có tọa độ: E(–1; 3); H(\(\frac{1}{5}\); \(\frac{{12}}{5}\)); G(2; 6).Ta tính giá trị của F = –x + y tại các đỉnh của tam giác EGH.Tại E(–1; 3) ta có F = –(–1) + 3 = 4;Tại H(\(\frac{1}{5}\); \(\frac{{12}}{5}\)) ta có F = – \(\frac{1}{5}\)+\(\frac{{12}}{5}\)= \(\frac{{11}}{5}\);Tại G(2; 6) ta có F = –2 + 6 = 4.Suy ra F nhỏ nhất bằng \(\frac{{11}}{5}\) tại H(\(\frac{1}{5}\); \(\frac{{12}}{5}\)), tức là Fmin = \(\frac{{11}}{5}\).Ta chọn đáp án A.
====== **** mời các bạn xem câu tiếp bên dưới **** =====