Câu hỏi:
Giá trị α (0° ≤ α ≤ 180°) thoả mãn tanα = 1,607 gần nhất với giá trị:
A. 0.03°;
B. 3°;
C. 58°;
Đáp án chính xác
D. 122°;
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Để tìm α khi biết tanα = 1,607 thì ta sử dụng máy tính cầm tay và tính được: α ≈ 58°.
Vậy α ≈ 58°.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC có M là trung điểm của AB, N là trung điểm của AC và P là trung điểm của BC.
Phát biểu nào dưới đây là sai.
Câu hỏi:
Cho tam giác ABC có M là trung điểm của AB, N là trung điểm của AC và P là trung điểm của BC.
Phát biểu nào dưới đây là sai.
A. \(\overrightarrow {MN} = \overrightarrow {PC} \);
B. \(\overrightarrow {AA} \) cùng hướng với \(\overrightarrow {PP} \);
C. \(\overrightarrow {MB} = \overrightarrow {AM} \);
D. \(\overrightarrow {MN} = \overrightarrow {PB} \).
Đáp án chính xác
Trả lời:
Đáp án đúng là D
+) Xét tam giác ABC, có:
M là trung điểm AB
N là trung điểm của AC
⇒ MN là đường trung bình của tam giác ABC
⇒ MN // BC và MN = \(\frac{1}{2}\)BC
Mà BP = PC = \(\frac{1}{2}\)BC (P là trung điểm của BC)
⇒ MN = CP = PB (1)
Vì MN // BC nên MN // CP. Khi đó \(\overrightarrow {MN} \) và \(\overrightarrow {PC} \) cùng phương. Suy ra \(\overrightarrow {MN} \) và \(\overrightarrow {PC} \) cùng hướng (2)
Từ (1) và (2) suy ra \(\overrightarrow {MN} \) = \(\overrightarrow {CP} \). Do đó đáp án A đúng.
Tương tự MN //BC hay MN // PB. Khi đó \(\overrightarrow {MN} \) và \(\overrightarrow {PB} \) cùng phương nhưng ngược hướng (3)
Từ (1) và (3) suy ra \(\overrightarrow {MN} \) không bằng \(\overrightarrow {PB} \). Do đó đáp án D sai.
+) Ta có \(\overrightarrow {AA} \) và \(\overrightarrow {PP} \) là các vectơ – không.
Mà mọi vectơ – không có cùng độ dài và cùng hướng nên bằng nhau
Suy ra \(\overrightarrow {AA} \) cùng hướng với \(\overrightarrow {PP} \). Do đó đáp án B đúng.
+) Hai vec tơ \(\overrightarrow {AM} \) và \(\overrightarrow {MB} \) cùng hướng
Vì M là trung điểm của AB nên AM = MB
Suy ra \(\overrightarrow {AM} = \overrightarrow {MB} \). Do đó đáp án C đúng.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình bình hành ABCD. Vectơ nào dưới đây bằng \(\overrightarrow {CD} \).
Câu hỏi:
Cho hình bình hành ABCD. Vectơ nào dưới đây bằng \(\overrightarrow {CD} \).
A. \(\overrightarrow {DC} \);
B. \(\overrightarrow {AD} \);
C. \(\overrightarrow {CB} \);
D. \(\overrightarrow {BA} \).
Đáp án chính xác
Trả lời:
Đáp án đúng là D
Vì ABCD là hình bình hành nên AB // CD nên \(\overrightarrow {BA} \) và \(\overrightarrow {CD} \) cùng phương. Do đó \(\overrightarrow {BA} \) và \(\overrightarrow {CD} \) cùng hướng.
Mặt khác AB = CD (tính chất hình bình hành)
Suy ra \(\overrightarrow {BA} = \overrightarrow {CD} \).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong mặt phẳng tọa độ Oxy, cho hai điểm M(3; -1) và N(2; -5). Điểm nào sau đây thẳng hàng với M, N?
Câu hỏi:
Trong mặt phẳng tọa độ Oxy, cho hai điểm M(3; -1) và N(2; -5). Điểm nào sau đây thẳng hàng với M, N?
A. P(0; 13);
B. Q(1; -8);
Đáp án chính xác
C. H(2; 1);
D. K(3; 1).
Trả lời:
Đáp án đúng là B
Ta có \(\overrightarrow {MN} \left( { – 1; – 4} \right)\). Gọi tọa độ điểm cần tìm là F(x; y).
Khi đó \(\overrightarrow {MF} \left( {x – 3;y + 1} \right)\)
Để M, N, F thẳng hàng khi \(\overrightarrow {MF} \) cùng phương với \(\overrightarrow {MN} \) hay \(\frac{{x – 3}}{{ – 1}} = \frac{{y + 1}}{{ – 4}}\)
⇔ y + 1 = 4(x – 3)
⇔ y= 4x – 12 (1)
+) Xét tọa độ P có x = 0 và y = 13 thay vào (1) ta được 13 = 4.0 – 12 là mệnh đề sai. Do đó loại P.
+) Xét tọa độ Q có x = 1 và y = -9 thay vào (1) ta được -8 = 4.1 – 12 là mệnh đề đúng. Do đó Q thỏa mãn.
+) Xét tọa độ H có x = 2 và y = 1 thay vào (1) ta được 1 = 4.2 – 12 là mệnh đề sai. Do đó loại H.
+) Xét tọa độ K có x = 3 và y = 1 thay vào (1) ta được 1 = 4.3 – 12 là mệnh đề sai. Do đó loại H.
Vậy M, N, Q thẳng hàng.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC vuông tại A, có AB = 2cm, AC = 7cm. Điểm M là trung điểm của BC. Tính độ dài vectơ AM.
Câu hỏi:
Cho tam giác ABC vuông tại A, có AB = 2cm, AC = 7cm. Điểm M là trung điểm của BC. Tính độ dài vectơ AM.
A. \(\left| {\overrightarrow {AM} } \right| = \sqrt {53} \)cm
B. \(\left| {\overrightarrow {AM} } \right| = 3\) cm
C. \(\left| {\overrightarrow {AM} } \right| = \frac{{\sqrt {53} }}{2}\) cm
Đáp án chính xác
D. \(\left| {\overrightarrow {AM} } \right| = \frac{3}{2}\) cm
Trả lời:
Đáp án đúng là C
Xét tam giác ABC vuông tại A, có:
BC2 = AB2 + AC2 (định lí Py – ta – go)
⇔ BC2 = 22 + 72 = 4 + 49 = 53
⇔ BC = \(\sqrt {53} \) cm
Ta lại có M là trung điểm BC
⇒ AM = \(\frac{1}{2}\) BC (tính chất đường trung tuyến)
⇒ AM = \(\frac{{\sqrt {53} }}{2}\) cm.
⇒ \(\left| {\overrightarrow {AB} } \right| = AB = \frac{{\sqrt {53} }}{2}cm\)
Vậy độ dài vectơ \(\overrightarrow {AB} \) là \(\frac{{\sqrt {53} }}{2}cm.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình thoi ABCD có độ dài hai đường chéo AC, BD lần lượt là 8 cm và 6 cm. Tính độ dài vectơ \(\overrightarrow {AB} \).
Câu hỏi:
Cho hình thoi ABCD có độ dài hai đường chéo AC, BD lần lượt là 8 cm và 6 cm. Tính độ dài vectơ \(\overrightarrow {AB} \).
A. 10 cm;
B. 3 cm;
C. 4 cm;
D. 5cm.
Đáp án chính xác
Trả lời:
Đáp án đúng là D
Gọi O là giao điểm của hai đường chéo AC và BD. Khi đó O là trung điểm của AC, cũng là trung điểm của BD.
⇒ AO = OC = \(\frac{{AC}}{2} = \frac{8}{2} = 4cm.\)
⇒ BO = OD = \(\frac{{BD}}{2} = \frac{6}{2} = 3cm.\)
Xét tam giác AOB vuông tại O, có:
AB2 = AO2 + BO2 (định lí Py – ta – go)
⇔ AB2 = 42 + 32 = 16 + 9 = 25
⇔ AB = 5 (cm)
\( \Rightarrow \left| {\overrightarrow {AB} } \right| = AB = 5cm.\)
Vậy độ dài \(\overrightarrow {AB} \) là 5cm.====== **** mời các bạn xem câu tiếp bên dưới **** =====