Câu hỏi:
Điểm M thay đổi trên đường thẳng d. Tìm giá trị nhỏ nhất của chu vi tam giác ABM.
Trả lời:
Hướng dẫn giải
Dựa vào phương trình đường thẳng d ta có:
x + y – 1 = 0
⇔ y = 1 – x
Do M thuộc đường thẳng d nên toạ độ của điểm M có dạng M(t; 1– t).
Chu vi tam giác ABM là: AB + MA + MB
Mà AB luôn không đổi nên chu vi tam giác ABM nhỏ nhất khi và chỉ khi MA + MB nhỏ nhất.
Lấy A’ đối xứng với A qua đường thẳng d. Khi đó ta có:
MA + MB = MA’ + MB ≥ A’B
Dấu bằng xảy ra khi M = A’B ∩ d
Gọi H là hình chiếu vuông góc của A lên d. Khi đó AH đi qua điểm A(–3;0) và nhận vectơ chỉ phương \(\overrightarrow {{u_d}} = \left( {1; – 1} \right)\) của đường thẳng d là vectơ pháp tuyến nên phương trình của AH là:
1(x + 3) – 1(y – 0) = 0
⇔ x – y + 3 = 0
Vậy toạ độ điểm H là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y – 1 = 0}\\{x – y + 3 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x + y = 1}\\{x – y = – 3}\end{array} \Leftrightarrow \left\{ \begin{array}{l}x = – 1\\y = 2\end{array} \right.} \right.\)
Suy ra H(–1; 2). Mặt khác, H là trung điểm của AA’ nên ta có:
xH = (xA + xA’) : 2 ⇔ xA’ = 2xH – xA = 2.(–1) – (–3) = 1
yH = (yA + yA’) : 2 ⇔ yA’ = 2yH – yA = 2.2 – 0 = 4
Do đó, ta có A’(1; 4)
Ta có \(\overrightarrow {A’B} = \left( {0; – 6} \right)\) là một vectơ chỉ phương của đường thẳng A’B. Do đó A’B là đường thẳng đi qua đểm A’(1; 4) và nhận \(\overrightarrow n = \left( {1;0} \right)\) là một vectơ pháp tuyến. Phương trình của đường thẳng A’B là:
1(x – 1) + 0(y – 4) = 0
⇔ x – 1 = 0
Vậy toạ độ điểm M là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{x + y – 1 = 0}\\{x – 1 = 0}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}1 + y – 1 = 0\\x = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 0\end{array} \right.\)
Do đó ta có M(1; 0).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Xét vị trí tương đối của các cặp đường thẳng sau:
m: x + y – 2 = 0 và k: 2x + 2y – 4 = 0.
Câu hỏi:
Xét vị trí tương đối của các cặp đường thẳng sau:
m: x + y – 2 = 0 và k: 2x + 2y – 4 = 0.Trả lời:
Hướng dẫn giải
Xét m: x + y – 2 = 0 và k: 2x + 2y – 4 = 0 ta có:
a1 = 1, b1 = 1, c1 = –2
a2 = 2, b2 = 2, c2 = –4
Xét tỉ số:
\(\frac{{{a_1}}}{{{a_2}}} = \frac{1}{2};\frac{{{b_1}}}{{{b_2}}} = \frac{1}{2};\frac{{{c_1}}}{{{c_2}}} = \frac{{ – 2}}{{ – 4}} = \frac{1}{2} \Leftrightarrow \frac{{{a_1}}}{{{a_2}}} = \frac{{{b_1}}}{{{b_2}}} = \frac{{{c_1}}}{{{c_2}}}\)
Vậy m trùng với k.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- \(a:\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y = 4}\end{array}} \right.\) và \(b:\left\{ {\begin{array}{*{20}{c}}{x = 3t’}\\{y = 1 + t’}\end{array}} \right.\).
Câu hỏi:
\(a:\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y = 4}\end{array}} \right.\) và \(b:\left\{ {\begin{array}{*{20}{c}}{x = 3t’}\\{y = 1 + t’}\end{array}} \right.\).
Trả lời:
Hướng dẫn giải
Xét \(a:\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y = 4}\end{array}} \right.\) và \(b:\left\{ {\begin{array}{*{20}{c}}{x = 3t’}\\{y = 1 + t’}\end{array}} \right.\)
Ta có:
Vectơ chỉ phương của a là: \(\overrightarrow {{u_a}} \) = (2; 0)
Vectơ chỉ phương của b là: \(\overrightarrow {{u_b}} \) = (3; 1)
Do \(\frac{2}{3} \ne \frac{0}{1}\) nên \(\overrightarrow {{u_a}} \) và \(\overrightarrow {{u_b}} \) không cùng phương
Vậy a và b cắt nhau.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- d1: x – 2y – 1 = 0 và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1 – 2t}\\{y = 2 – t}\end{array}} \right.\).
Câu hỏi:
d1: x – 2y – 1 = 0 và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1 – 2t}\\{y = 2 – t}\end{array}} \right.\).
Trả lời:
Hướng dẫn giải
Xét d1: x – 2y – 1 = 0 và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1 – 2t}\\{y = 2 – t}\end{array}} \right.\)
Vectơ pháp tuyến của d1 là: \(\overrightarrow {{n_{{d_1}}}} = \left( {1; – 2} \right)\)
Vectơ chỉ phương của d2 là: \(\overrightarrow {{u_{{d_2}}}} = \left( { – 2; – 1} \right)\). Do đó, d2 có một vectơ pháp tuyến là: \(\overrightarrow {{n_{{d_2}}}} = \left( {1; – 2} \right)\)
Ta có: \(\overrightarrow {{n_{{d_1}}}} = \overrightarrow {{n_{{d_2}}}} \) nên d1 và d2 song song hoặc trùng nhau
Xét d1: x – 2y – 1 = 0 . Khi x = 3 thì y = 1, do đó, điểm (3; 1) thuộc đường thẳng d1.
Xét \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1 – 2t}\\{y = 2 – t}\end{array}} \right.\) có: \(\left\{ {\begin{array}{*{20}{c}}{3 = 1 – 2t}\\{1 = 2 – t}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}t = – 1\\t = 1\end{array} \right.\) (không thể tồn tại), do đó, điểm (3; 1) không thuộc đường thẳng d2
Vậy d1 // d2.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tính góc giữa các cặp đường thẳng sau:
d: y – 1 = 0 và k: x – y + 4 = 0;
Câu hỏi:
Tính góc giữa các cặp đường thẳng sau:
d: y – 1 = 0 và k: x – y + 4 = 0;Trả lời:
Hướng dẫn giải
Gọi φ là góc giữa hai đường thẳng d và k. Từ giả thiết ta có \(\overrightarrow {{n_d}} = \left( {0;1} \right),\overrightarrow {{n_k}} = \left( {1; – 1} \right)\). Do đó, theo công thức tính góc của hai đường thẳng thì
\(\cos \varphi = \left| {\cos \left( {\overrightarrow {{n_d}} ,\,\,\overrightarrow {{n_k}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_d}} .\overrightarrow {{n_k}} } \right|}}{{\left| {\overrightarrow {{n_d}} } \right|\left| {\overrightarrow {{n_k}} } \right|}}\)\( = \frac{{\left| {0.1 + 1.\left( { – 1} \right)} \right|}}{{\sqrt {{0^2} + {1^2}} .\sqrt {{1^2} + {{\left( { – 1} \right)}^2}} }} = \frac{1}{{\sqrt 2 }}\)
\( \Rightarrow \varphi = 45^\circ \).
Vậy góc giữa hai đường thẳng là φ = 45°.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- \(a:\left\{ {\begin{array}{*{20}{c}}{x = 3 + t}\\{y = 2t}\end{array}} \right.\) và b: 3x + y + 1 = 0;
Câu hỏi:
\(a:\left\{ {\begin{array}{*{20}{c}}{x = 3 + t}\\{y = 2t}\end{array}} \right.\) và b: 3x + y + 1 = 0;
Trả lời:
Hướng dẫn giải
Gọi φ là góc giữa hai đường thẳng a và b. Từ giả thiết ta có \(\overrightarrow {{u_a}} = \left( {1;2} \right),\overrightarrow {{n_b}} = \left( {3;1} \right)\)
nên \(\overrightarrow {{u_b}} = \left( {1; – 3} \right)\). Do đó, theo công thức tính góc của hai đường thẳng thì
\(\cos \varphi = \left| {\cos \left( {\overrightarrow {{u_a}} ,\,\,\overrightarrow {{u_b}} } \right)} \right| = \frac{{\left| {\overrightarrow {{u_a}} .\overrightarrow {{u_b}} } \right|}}{{\left| {\overrightarrow {{u_a}} } \right|\left| {\overrightarrow {{u_b}} } \right|}}\)\( = \frac{{\left| {1.1 + 2.\left( { – 3} \right)} \right|}}{{\sqrt {{1^2} + {2^2}} .\sqrt {{3^2} + {1^2}} }} = \frac{{\sqrt 2 }}{2}\)
\( \Rightarrow \varphi = 45^\circ \)
Vậy góc giữa hai đường thẳng a và b là φ = 45°.====== **** mời các bạn xem câu tiếp bên dưới **** =====