Câu hỏi:
Có 3 ứng viên cho 1 vị trí làm việc. Hội đồng tuyển dụng có 5 người, mỗi người bầu cho đúng 1 ứng viên. Số cách bầu của hội đồng là
A. \(C_5^3\).
B. 53.
C. 35.
D. Không số nào trong các số đó.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Mỗi thành viên của hội đồng có 3 cách bầu khác nhau.
Số thành viên của hội đồng là 5.
Như vậy, theo quy tắc nhân thì số cách bầu là: 3 . 3 . 3 . 3 . 3 = 35.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Có 5 nhà xe vận chuyển hành khách giữa Hà Nội và Hải Phòng. Số cách để một người đi từ Hà Nội tới Hải Phòng rồi sau đó quay lại Hà Nội bằng hai nhà xe khác nhau là
A. 5.
B. 10.
C. 15.
D. 20.
Câu hỏi:
Có 5 nhà xe vận chuyển hành khách giữa Hà Nội và Hải Phòng. Số cách để một người đi từ Hà Nội tới Hải Phòng rồi sau đó quay lại Hà Nội bằng hai nhà xe khác nhau là
A. 5.
B. 10.
C. 15.
D. 20.Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Từ Hà Nội tới Hải Phòng, một hành khách có 5 cách chọn nhà xe.
Để quay lại Hà Nội bằng một nhà xe khác thì hành khách có 5 – 1= 4 cách chọn.
Như vậy, theo quy tắc nhân thì số cách đi là 5 . 4 = 20 (cách).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Số các số tự nhiên chẵn có ba chữ số, các chữ số đôi một khác nhau, được tạo thành từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8; 9 là
A. 224.
B. 280.
C. 324.
D. Không số nào trong các số đó.
Câu hỏi:
Số các số tự nhiên chẵn có ba chữ số, các chữ số đôi một khác nhau, được tạo thành từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8; 9 là
A. 224.
B. 280.
C. 324.
D. Không số nào trong các số đó.Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Một số có ba chữ số như vậy có dạng \(\overline {abc} \), với a, b, c khác nhau, được chọn từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8; 9 và c chỉ nhận một trong các giá trị 2; 4; 6; 8. Ta có thể xây dựng một số như vậy bằng cách trước hết chọn c, sau đó chọn ra hai chữ số có sắp thứ tự a, b từ các chữ số còn lại.
Có 4 cách chọn c là một trong các chữ số 2; 4; 6; 8.
Có 8 cách chọn a (bớt đi 1 số đã chọn bởi c).
Có 7 cách chọn b (bớt đi 1 số đã chọn bởi c, 1 số đã chọn bởi a).
Vì thế, theo quy tắc nhân, số các số có tính chất của bài toán là:
4 . 8 . 7 = 224 (số).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Số các số tự nhiên trong khoảng từ 3 000 đến 4 000, chia hết cho 5, các chữ số đôi một khác nhau, được tạo thành từ các chữ số 1; 2; 3; 4; 5; 6 là
A. \(C_4^2\).
B. \(A_4^2\).
C. \(A_5^2\).
D. \(C_6^4\).
Câu hỏi:
Số các số tự nhiên trong khoảng từ 3 000 đến 4 000, chia hết cho 5, các chữ số đôi một khác nhau, được tạo thành từ các chữ số 1; 2; 3; 4; 5; 6 là
A. \(C_4^2\).
B. \(A_4^2\).
C. \(A_5^2\).
D. \(C_6^4\).Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Một số tự nhiên nằm trong khoảng từ 3 000 đến 4 000 và chia hết cho 5 và có các chữ số được tạo thành từ các chữ số 1; 2; 3; 4; 5; 6 phải có chữ số hàng đơn vị là 5 và chữ số hàng nghìn là 3. Như vậy các số thoả mãn yêu cầu của bài toán có dạng \(\overline {3ab5} \), trong đó a, b là 2 chữ số khác nhau chọn trong các chữ số 1; 2; 4; 6 (có sắp xếp). Do đó, số số tự nhiên thỏa mãn yêu cầu đề bài là số các chỉnh hợp chập 2 của 4 và là: \(A_4^2\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho số nguyên dương n ≥ 4. Người ta đánh dấu n điểm phân biệt trên một đường tròn. Biết rằng số các hình tam giác với các đỉnh là các điểm được đánh dấu thì bằng số các tứ giác với các đỉnh là các điểm được đánh dấu. Giá trị của n là
A. 4.
B. 6.
C. 7.
D. 9.
Câu hỏi:
Cho số nguyên dương n ≥ 4. Người ta đánh dấu n điểm phân biệt trên một đường tròn. Biết rằng số các hình tam giác với các đỉnh là các điểm được đánh dấu thì bằng số các tứ giác với các đỉnh là các điểm được đánh dấu. Giá trị của n là
A. 4.
B. 6.
C. 7.
D. 9.Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Mỗi tam giác cần đếm có 3 đỉnh là các điểm được đánh dấu.
Đảo lại, mỗi bộ ba điểm được đánh dấu xác định một tam giác.
Như vậy, do khi đảo cách thứ tự 3 đỉnh đã chọn cho nhau thì tam giác tạo thành không thay đổi nên số các tam giác với các điểm được đánh dấu là số các tổ hợp chập 3 của n và là: \(C_n^3\).
Mỗi tứ giác cần đếm có 4 đỉnh là các điểm được đánh dấu.
Đảo lại, mỗi bộ bốn điểm được đánh dấu xác định một tứ giác.
Như vậy, do khi đảo cách thứ tự 4 đỉnh đã chọn cho nhau thì tứ giác tạo thành không thay đổi nên số các tứ giác với các điểm được đánh dấu là số các tổ hợp chập 4 của n và là: \(C_n^4\).
Biết rằng số các hình tam giác với các đỉnh là các điểm được đánh dấu thì bằng số các tứ giác với các đỉnh là các điểm được đánh dấu. Suy ra \(C_n^3 = C_n^4\), nghĩa là
\(\frac{{n!}}{{3!(n – 3)!}} = \frac{{n!}}{{4!(n – 4)!}}\)
\( \Leftrightarrow \frac{{n\left( {n – 1} \right)\left( {n – 2} \right)(n – 3)!}}{{3.2.1.(n – 3)!}} = \frac{{n\left( {n – 1} \right)\left( {n – 2} \right)\left( {n – 3} \right)(n – 4)!}}{{4.3.2.1.(n – 4)!}}\)
\( \Leftrightarrow \frac{{n\left( {n – 1} \right)\left( {n – 2} \right)}}{{3.2.1}} = \frac{{n\left( {n – 1} \right)\left( {n – 2} \right)\left( {n – 3} \right)}}{{4.3.2.1}}\)
\( \Leftrightarrow \frac{{n\left( {n – 1} \right)\left( {n – 2} \right)}}{{3.2.1}} – \frac{{n\left( {n – 1} \right)\left( {n – 2} \right)\left( {n – 3} \right)}}{{4.3.2.1}} = 0\)
\( \Leftrightarrow n\left( {n – 1} \right)\left( {n – 2} \right)\left( {\frac{1}{6} – \frac{{n – 3}}{{24}}} \right) = 0\)
\( \Leftrightarrow n\left( {n – 1} \right)\left( {n – 2} \right)\left( {\frac{{4 – n + 3}}{{24}}} \right) = 0\)
\( \Leftrightarrow n\left( {n – 1} \right)\left( {n – 2} \right)\left( {\frac{{7 – n}}{{24}}} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}n = 0\\n = 1\\n = 2\\n = 7\end{array} \right.\)
Mà n ≥ 4 nên chọn n = 7.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tại một cuộc họp của học sinh các lớp 10A, 10B, 10C, 10D và 10E, ban tổ chức đề nghị đại diện của mỗi lớp trình bày một báo cáo. Bạn đại diện của lớp 10A đề nghị được trình bày báo cáo ngay trước đại diện của lớp 10B và được ban tổ chức đồng ý. Số cách xếp chương trình là:
A. 24.
B. 36.
C. 48.
D. 30.
Câu hỏi:
Tại một cuộc họp của học sinh các lớp 10A, 10B, 10C, 10D và 10E, ban tổ chức đề nghị đại diện của mỗi lớp trình bày một báo cáo. Bạn đại diện của lớp 10A đề nghị được trình bày báo cáo ngay trước đại diện của lớp 10B và được ban tổ chức đồng ý. Số cách xếp chương trình là:
A. 24.
B. 36.
C. 48.
D. 30.Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Kí hiệu thứ tự các bài báo cáo là 1, 2, 3, 4, 5. Có 4 phương án xếp báo cáo của đại diện của lớp 10B ngay sau báo cáo đại diện của 10A là:
– Phương án 1: 10A báo cáo 1, 10B báo cáo 2;
– Phương án 2: 10A báo cáo 2, 10B báo cáo 3;
– Phương án 3: 10A báo cáo 3, 10B báo cáo 4;
– Phương án 4: 10A báo cáo 4, 10B báo cáo 5.
Đối với mỗi phương án, cách xếp thứ tự báo cáo của 10A và 10B là chỉ có 1 cách, ban tổ chức có thể xếp đại diện của các lớp 10C, 10D và 10E theo thứ tự bất kì vào vị trí các báo cáo còn lại.
Do đó, với mỗi phương án thì số cách xếp là: 1.1.3! = 3.2.1 = 6 (cách)
Như vậy, theo quy tắc cộng thì số cách xếp chương trình là: 6 + 6 + 6 + 6 = 24 (cách).====== **** mời các bạn xem câu tiếp bên dưới **** =====