Câu hỏi:
Cho hình thang cân ABCD
Nhận xét nào sau đây đúng về cặp vec tơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \)?
A. \(\overrightarrow {AB} = \overrightarrow {BD} \);
B. Hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \) cùng phương;
C. Hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \) cùng hướng;
D. Hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \) cùng độ dài.
Đáp án chính xác
Trả lời:
Đáp án đúng là D
Vì AC và BD cắt nhau nên hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \) không cùng phương. Suy ra hai vec tơ này không cùng hướng và không bằng nhau. Do đó A, B, C sai.
Vì ABCD là hình thang cân nên AC = BD (hai đường chéo bằng nhau). Do đó D đúng.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình vẽ sau:
Cặp vectơ nào cùng hướng?
Câu hỏi:
Cho hình vẽ sau:
Cặp vectơ nào cùng hướng?
A. \(\overrightarrow a \) và \(\overrightarrow b \);
Đáp án chính xác
B. \(\overrightarrow a \) và \(\overrightarrow c \);
C. \(\overrightarrow c \) và \(\overrightarrow b \);
D. \(\overrightarrow c \) và \(\overrightarrow e \).
Trả lời:
Đáp án đúng là A
Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng nằm trên một đường thẳng hay chúng có giá trùng nhau nên \(\overrightarrow a \) và \(\overrightarrow b \) là hai vectơ cùng phương. Do đó hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng.
Hai vectơ \(\overrightarrow a \) và \(\overrightarrow c \) nằm trên hai đường thẳng song song hay chúng có giá song song nhau nên \(\overrightarrow a \) và \(\overrightarrow c \) là hai vectơ cùng phương. Do đó hai vectơ \(\overrightarrow a \) và \(\overrightarrow c \) ngược hướng.
Hai vectơ \(\overrightarrow b \) và \(\overrightarrow c \) nằm trên hai đường thẳng song song hay chúng có giá song song nhau nên \(\overrightarrow b \) và \(\overrightarrow c \) là hai vectơ cùng phương. Do đó hai vectơ \(\overrightarrow b \) và \(\overrightarrow c \) ngược hướng.
Hai vectơ \(\overrightarrow e \) và \(\overrightarrow c \) không cùng phương.
Vậy các cặp vec tơ cùng hướng là \(\overrightarrow a \) và \(\overrightarrow b \).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình thoi ABCD có độ dài hai đường chéo AC, BD lần lượt là 8 cm và 6 cm. Tính độ dài vectơ \(\overrightarrow {AB} \).
Câu hỏi:
Cho hình thoi ABCD có độ dài hai đường chéo AC, BD lần lượt là 8 cm và 6 cm. Tính độ dài vectơ \(\overrightarrow {AB} \).
A. 10 cm;
Đáp án chính xác
B. 3 cm;
C. 4 cm;
D. 5cm.
Trả lời:
Đáp án đúng là D
Gọi O là giao điểm của hai đường chéo AC và BD. Khi đó O là trung điểm của AC, cũng là trung điểm của BD.
⇒ AO = OC = \(\frac{{AC}}{2} = \frac{8}{2} = 4cm.\)
⇒ BO = OD = \(\frac{{BD}}{2} = \frac{6}{2} = 3cm.\)
Xét tam giác AOB vuông tại O, có:
AB2 = AO2 + BO2 (định lí Py – ta – go)
⇔ AB2 = 42 + 32 = 16 + 9 = 25
⇔ AB = 5 (cm)
\( \Rightarrow \left| {\overrightarrow {AB} } \right| = AB = 5cm.\)
Vậy độ dài \(\overrightarrow {AB} \) là 5cm.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình bình hành ABCD. Vectơ nào dưới đây bằng \(\overrightarrow {CD} \).
Câu hỏi:
Cho hình bình hành ABCD. Vectơ nào dưới đây bằng \(\overrightarrow {CD} \).
A. \(\overrightarrow {DC} \);
B. \(\overrightarrow {AD} \);
C. \(\overrightarrow {CB} \);
D. \(\overrightarrow {BA} \).
Đáp án chính xác
Trả lời:
Đáp án đúng là D
Vì ABCD là hình bình hành nên AB // CD nên \(\overrightarrow {BA} \) và \(\overrightarrow {CD} \) cùng phương. Do đó \(\overrightarrow {BA} \) và \(\overrightarrow {CD} \) cùng hướng.
Mặt khác AB = CD (tính chất hình bình hành)
Suy ra \(\overrightarrow {BA} = \overrightarrow {CD} \).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC có M là trung điểm của AB, N là trung điểm của AC và P là trung điểm của BC.
Phát biểu nào dưới đây là sai.
Câu hỏi:
Cho tam giác ABC có M là trung điểm của AB, N là trung điểm của AC và P là trung điểm của BC.
Phát biểu nào dưới đây là sai.
A. \(\overrightarrow {MN} = \overrightarrow {PC} \);
B. \(\overrightarrow {AA} \) cùng hướng với \(\overrightarrow {PP} \);
C. \(\overrightarrow {MB} = \overrightarrow {AM} \);
D. \(\overrightarrow {MN} = \overrightarrow {PB} \).
Đáp án chính xác
Trả lời:
Đáp án đúng là D
+) Xét tam giác ABC, có:
M là trung điểm AB
N là trung điểm của AC
⇒ MN là đường trung bình của tam giác ABC
⇒ MN // BC và MN = \(\frac{1}{2}\)BC
Mà BP = PC = \(\frac{1}{2}\)BC (P là trung điểm của BC)
⇒ MN = CP = PB (1)
Vì MN // BC nên MN // CP. Khi đó \(\overrightarrow {MN} \) và \(\overrightarrow {PC} \) cùng phương. Suy ra \(\overrightarrow {MN} \) và \(\overrightarrow {PC} \) cùng hướng (2)
Từ (1) và (2) suy ra \(\overrightarrow {MN} \) = \(\overrightarrow {CP} \). Do đó đáp án A đúng.
Tương tự MN //BC hay MN // PB. Khi đó \(\overrightarrow {MN} \) và \(\overrightarrow {PB} \) cùng phương nhưng ngược hướng (3)
Từ (1) và (3) suy ra \(\overrightarrow {MN} \) không bằng \(\overrightarrow {PB} \). Do đó đáp án D sai.
+) Ta có \(\overrightarrow {AA} \) và \(\overrightarrow {PP} \) là các vectơ – không.
Mà mọi vectơ – không có cùng độ dài và cùng hướng nên bằng nhau
Suy ra \(\overrightarrow {AA} \) cùng hướng với \(\overrightarrow {PP} \). Do đó đáp án B đúng.
+) Hai vec tơ \(\overrightarrow {AM} \) và \(\overrightarrow {MB} \) cùng hướng
Vì M là trung điểm của AB nên AM = MB
Suy ra \(\overrightarrow {AM} = \overrightarrow {MB} \). Do đó đáp án C đúng.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC vuông tại A, có AB = 2cm, AC = 7cm. Điểm M là trung điểm của BC. Tính độ dài vectơ AM.
Câu hỏi:
Cho tam giác ABC vuông tại A, có AB = 2cm, AC = 7cm. Điểm M là trung điểm của BC. Tính độ dài vectơ AM.
A. \(\left| {\overrightarrow {AM} } \right| = \sqrt {53} \)cm
B. \(\left| {\overrightarrow {AM} } \right| = 3\) cm
C. \(\left| {\overrightarrow {AM} } \right| = \frac{{\sqrt {53} }}{2}\) cm
Đáp án chính xác
D. \(\left| {\overrightarrow {AM} } \right| = \frac{3}{2}\) cm
Trả lời:
Đáp án đúng là C
Xét tam giác ABC vuông tại A, có:
BC2 = AB2 + AC2 (định lí Py – ta – go)
⇔ BC2 = 22 + 72 = 4 + 49 = 53
⇔ BC = \(\sqrt {53} \) cm
Ta lại có M là trung điểm BC
⇒ AM = \(\frac{1}{2}\) BC (tính chất đường trung tuyến)
⇒ AM = \(\frac{{\sqrt {53} }}{2}\) cm.
⇒ \(\left| {\overrightarrow {AB} } \right| = AB = \frac{{\sqrt {53} }}{2}cm\)
Vậy độ dài vectơ \(\overrightarrow {AB} \) là \(\frac{{\sqrt {53} }}{2}cm.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====