Câu hỏi:
Cho các câu sau:
(1) Số 7 là số lẻ.
(2) Bài toán này khó quá!
(3) Cuối tuần này bạn có rảnh không?
(4) Số 10 là một số nguyên tố.
Trong các câu trên có bao nhiêu câu là mệnh đề?
A. 1;
B. 2;
Đáp án chính xác
C. 3;
D. 4.
Trả lời:
Đáp án đúng là: B
Câu (1) là một mệnh đề vì đây là một khẳng định đúng.
Câu (2), câu (3) không là mệnh đề vì đây là các câu cảm thán và câu hỏi, không xác định tính đúng sai.
Câu (4) là một mệnh đề vì đây là một khẳng định sai.
Vậy trong các câu đã cho có 2 câu là mệnh đề.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Mệnh đề phủ định của mệnh đề “∀x ∈ ℝ, x – 2 > 5” là
Câu hỏi:
Mệnh đề phủ định của mệnh đề “∀x ∈ ℝ, x – 2 > 5” là
A. “∃x ∈ ℝ, x – 2 ≤ 5”;
Đáp án chính xác
B. “∃x ∈ ℝ, x – 2 ≥ 5”;
C. “∀x ∈ ℝ, x – 2 ≤ 5”;
D. “∀x ∈ ℝ, x – 2 ≥ 5”.
Trả lời:
Đáp án đúng là: A
Phủ định của ∀ là ∃;
Phủ định của > là ≤.
Do đó, mệnh đề phủ định của mệnh đề “∀x ∈ ℝ, x – 2 > 5” là mệnh đề “∃x ∈ ℝ, x – 2 ≤ 5”.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Liệt kê các phần tử của tập hợp A = {n ∈ ℕ| 3 < n < 8} ta được
Câu hỏi:
Liệt kê các phần tử của tập hợp A = {n ∈ ℕ| 3 < n < 8} ta được
A. A = {4; 5; 6; 7; 8};
B. A = {3; 4; 5; 6; 7; 8};
C. A = {3; 4; 5; 6; 7};
D. A = {4; 5; 6; 7}.
Đáp án chính xác
Trả lời:
Đáp án đúng là: D
Ta có: A = {n ∈ ℕ| 3 < n < 8}.
Khi đó tập hợp A gồm các phần tử là các số tự nhiên lớn hơn 3 và nhỏ hơn 8, đó là các số: 4, 5, 6, 7.
Vậy ta viết tập hợp A bằng cách liệt kê các phần tử ta được:
A = {4; 5; 6; 7}.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Xác định tập hợp B = {3; 6; 9; 12; 15} bằng cách nêu tính chất đặc trưng cho các phần tử của tập hợp.
Câu hỏi:
Xác định tập hợp B = {3; 6; 9; 12; 15} bằng cách nêu tính chất đặc trưng cho các phần tử của tập hợp.
A. B = {3n | n ∈ ℕ, 1 ≤ n ≤ 5};
Đáp án chính xác
B. B = {n | n ⁝ 3};
C. B = {3n | n ∈ ℕ, 1 < n < 5};
D. B = {n | n ∈ ℕ, 0 ≤ n ≤ 5}.
Trả lời:
Đáp án đúng là: A
Tập hợp B gồm các phần tử, 3, 6, 9, 12, 15, đây đều là các số tự nhiên chia hết cho 3, ta viết các số này dưới dạng 3n, n ∈ ℕ, 1 ≤ n ≤ 5.
Vậy ta viết tập hợp B dưới dạng nêu tính chất đặc trưng cho các phần tử của tập hợp ta được:
B = {n | n ∈ ℕ, 1 ≤ n ≤ 5}.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hai tập hợp A = (– ∞; – 2] và B = (– 3; 5]. Tìm mệnh đề sai.
Câu hỏi:
Cho hai tập hợp A = (– ∞; – 2] và B = (– 3; 5]. Tìm mệnh đề sai.
A. A ∩ B = (– 3; – 2];
B. A \ B = (– ∞; – 3);
Đáp án chính xác
C. A ∪ B = (– ∞; 5];
D. B \ A = (– 2; 5].
Trả lời:
Đáp án đúng là: B
Biểu diễn các tập hợp A và B như sau:
Khi đó ta xác định được:
A ∩ B = {x | x ∈ A và x ∈ B} = (– 3; – 2];
A \ B = {x | x ∈ A và x ∉ B} = (– ∞; – 3];
A ∪ B = {x | x ∈ A hoặc x ∈ B} = (– ∞; 5];
B \ A = {x | x ∈ B và x ∉ A} = (– 2; 5].
Vậy mệnh đề sai là mệnh đề ở đáp án B.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hai tập hợp H = {n ∈ ℕ | n là bội của 2 và 3}, K = {n ∈ ℕ | n là bội của 6}. Trong các mệnh đề sau, mệnh đề nào sai?
Câu hỏi:
Cho hai tập hợp H = {n ∈ ℕ | n là bội của 2 và 3}, K = {n ∈ ℕ | n là bội của 6}. Trong các mệnh đề sau, mệnh đề nào sai?
A. K ⊂ H;
B. H ⊂ K;
C. ∃n: n ∈ H và n ∉ K;
Đáp án chính xác
D. H = K.
Trả lời:
Đáp án đúng là: C
Ta có: H = {n ∈ ℕ | n là bội của 2 và 3} nên H là tập hợp bội chung (là số tự nhiên) của 2 và 3, do đó mọi phần tử của H đều chia hết cho BCNN(2, 3), mà BCNN(2, 3) = 6. Vậy mọi phần tử của tập H đều chia hết cho 6.
Lại có: K = {n ∈ ℕ | n là bội của 6} nên K là tập hợp các bội (là số tự nhiên) của 6 hay mọi phần tử của tập K đều chia hết cho 6.
Do vậy, H = K.
Khi đó các mệnh đề H = K, K ⊂ H, H ⊂ K đều đúng.
Vậy mệnh đề ở đáp án C là mệnh đề sai.====== **** mời các bạn xem câu tiếp bên dưới **** =====