Câu hỏi:
Cặp số nào sau đây là nghiệm của hệ bất phương trình
A. (1; 0);
B. (– 1; 0);
Đáp án chính xác
C. (– 2; 3);
D. (0; – 1).
Trả lời:
Đáp án đúng là B
Ta xét hệ phương trình:
+) Thay x = 1 và y = 0 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:
(1) ⇔ 1 – 2.0 < 0 ⇔ 1 < 0 (vô lí);
(2) ⇔ 1 + 3.0 > – 2 ⇔ 1 > – 2 (luôn đúng);
(3) ⇔ – 1 + 0 < 3 ⇔ – 1 < 3 (luôn đúng).
Do đó cặp số (1; 0) không là nghiệm của hệ bất phương trình đã cho.
+) Thay x = – 1 và y = 0 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:
(1) ⇔ – 1 – 2.0 < 0 ⇔ – 1 < 0 (luôn đúng);
(2) ⇔ – 1 + 3.0 > – 2 ⇔ – 1 > – 2 (luôn đúng);
(3) ⇔ 1 + 0 < 3 ⇔ 1 < 3 (luôn đúng).
Do đó cặp số (– 1; 0) là nghiệm của hệ bất phương trình đã cho.
+) Thay x = – 2 và y = 3 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:
(1) ⇔ – 2 – 2.3 < 0 ⇔ – 8 < 0 (luôn đúng);
(2) ⇔ – 2 + 3.3 > – 2 ⇔ 7 > – 2 (luôn đúng);
(3) ⇔ 2 + 3 < 3 ⇔ 5 < 3 (vô lí).
Do đó cặp số (– 2; 3) không là nghiệm của hệ bất phương trình đã cho.
+) Thay x = 0 và y = – 1 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:
(1) ⇔ 0 – 2.(– 1) < 0 ⇔ 2 < 0 (vô lí);
(2) ⇔ 0 + 3.(– 1) > – 2 ⇔ – 3 > – 2 (vô lí);
(3) ⇔ 0 + (– 1) < 3 ⇔ – 1 < 3 (luôn đúng).
Do đó cặp số (0; – 1) không là nghiệm của hệ bất phương trình đã cho.
Vậy (– 1; 0) là nghiệm của hệ phương trình đã cho.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cặp số nào sau đây không là nghiệm của hệ bất phương trình x+y≤22x−3y>−2.
Câu hỏi:
Cặp số nào sau đây không là nghiệm của hệ bất phương trình
A. (0; 0);
B. (1; 1);
C. (– 1; 1);
Đáp án chính xác
D. (– 1; – 1).
Trả lời:
Đáp án đúng là C
Xét hệ phương trình:
+) Thay x = 0 và y = 0 lần lượt vào các bất phương trình (1) và (2) trong hệ, ta được:
(1) ⇔ 0 + 0 ≤ 2 ⇔ 0 ≤ 2 (luôn đúng);
(2) ⇔ 2.0 – 3.0 > – 2 ⇔ 0 > – 2 (luôn đúng).
Do đó cặp số (0; 0) là nghiệm của hệ bất phương trình đã cho.
+) Thay x = 1 và y = 1 lần lượt vào các bất phương trình (1) và (2) trong hệ, ta được:
(1) ⇔ 1 + 1 ≤ 2 ⇔ 2 ≤ 2 (luôn đúng);
(2) ⇔ 2.1 – 3.1 > – 2 ⇔ – 1 > – 2 (luôn đúng).
Do đó cặp số (1; 1) là nghiệm của hệ bất phương trình đã cho.
+) Thay x = – 1 và y = 1 lần lượt vào các bất phương trình (1) và (2) trong hệ, ta được:
(1) ⇔ – 1 + 1 ≤ 2 ⇔ 0 ≤ 2 (luôn đúng);
(2) ⇔ 2.(– 1) – 3.1 > – 2 ⇔ – 5 > – 2 (vô lí).
Do đó cặp số (– 1; 1) không là nghiệm của hệ bất phương trình đã cho.
+) Thay x = – 1 và y = – 1 lần lượt vào các bất phương trình (1) và (2) trong hệ, ta được:
(1) ⇔ – 1 + (– 1) ≤ 2 ⇔ – 2 ≤ 2 (luôn đúng);
(2) ⇔ 2.(– 1) – 3.(– 1) > – 2 ⇔ 1 > – 2 (luôn đúng).
Do đó cặp số (– 1; – 1) là nghiệm của hệ bất phương trình đã cho.
Vậy cặp số (– 1; 1) không là nghiệm của hệ bất phương trình đã cho.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Miền nghiệm của hệ bất phương trình 2x−5y>12x+y>−5x+y
Câu hỏi:
Miền nghiệm của hệ bất phương trình là phần mặt phẳng chứa điểm có tọa độ:
A. (0; 0);
B. (1; 0);
C. (0; 2);
D. (0; – 2).
Đáp án chính xác
Trả lời:
Đáp án đúng là D
Ta xét hệ bất phương trình .
+) Thay x = 0 và y = 0 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:
(1) ⇔ 2.0 – 5.0 > 1 ⇔ 0 > 1 (vô lí);
(2) ⇔ 2.0 + 0 > – 5 ⇔ 0 > – 5 (luôn đúng);
(3) ⇔ 0 + 0 < – 1 ⇔ 0 < – 1 (vô lí).
Do đó cặp số (0; 0) không thuộc miền nghiệm của hệ bất phương trình đã cho.
+) Thay x = 1 và y = 0 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:
(1) ⇔ 2.1 – 5.0 > 1 ⇔ 2 > 1 (luôn đúng);
(2) ⇔ 2.1 + 0 > – 5 ⇔ 2 > – 5 (luôn đúng);
(3) ⇔ 1 + 0 < – 1 ⇔ 1 < – 1 (vô lí).
Do đó cặp số (1; 0) không thuộc miền nghiệm của hệ bất phương trình đã cho.
+) Thay x = 0 và y = 2 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:
(1) ⇔ 2.0 – 5.2 > 1 ⇔ – 10 > 1 (vô lí);
(2) ⇔ 2.0 + 2 > – 5 ⇔ 2 > – 5 (luôn đúng);
(3) ⇔ 0 + 2 < – 1 ⇔ 2 < – 1 (vô lí).
Do đó cặp số (0; 2) không thuộc miền nghiệm của hệ bất phương trình đã cho.
+) Thay x = 0 và y = – 2 lần lượt vào các bất phương trình (1), (2) và (3) trong hệ, ta được:
(1) ⇔ 2.0 – 5.(– 2) > 1 ⇔ 10 > 1 (luôn đúng);
(2) ⇔ 2.0 + (– 2) > – 5 ⇔ – 2 > – 5 (luôn đúng);
(3) ⇔ 0 + (– 2) < – 1 ⇔ – 2 < – 1 (luôn đúng).
Do đó cặp số (0; – 2 ) thuộc miền nghiệm của hệ bất phương trình đã cho.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Miền đa giác ABCD ở Hình 9 là miền nghiệm của hệ bất phương trình:
Câu hỏi:
Miền đa giác ABCD ở Hình 9 là miền nghiệm của hệ bất phương trình:
A.
Đáp án chính xác
B.
C.
D.
Trả lời:
Đáp án đúng là A
+) Gọi d1 là đường thẳng đi qua hai điểm A và D. Đường thẳng cắt hai trục tọa độ tại hai điểm (– 2; 0) và (0; 2) nên phương trình đường thẳng d là: .
Lấy điểm O(0; 0) ta có 0 – 0 = 0 > – 2.
Mà điểm O thuộc miền nghiệm của hệ bất phương trình nên ta có bất phương trình x – y ≥ – 2.
+) Gọi d2 là đường thẳng đi qua hai điểm A và D. Đường thẳng cắt hai trục tọa độ tại hai điểm (4; 0) và (0; 4) nên phương trình đường thẳng d là: .
Lấy điểm O(0; 0) ta có 0 + 0 = 0 < 4.
Mà điểm O thuộc miền nghiệm của hệ bất phương trình nên ta có bất phương trình x + y ≤ 4.
+) Gọi d3 là đường thẳng đi qua hai điểm B và C. Đường thẳng cắt hai trục tọa độ tại hai điểm (2; 0) và (0; – 2) nên phương trình đường thẳng d là: .
Lấy điểm O(0; 0) ta có 0 – 0 = 0 < 2.
Mà điểm O thuộc miền nghiệm của hệ bất phương trình nên ta có bất phương trình x – y ≤ 2.
+) Gọi d4 là đường thẳng đi qua hai điểm D và C. Đường thẳng cắt hai trục tọa độ tại hai điểm (– 1; 0) và (0; – 1) nên phương trình đường thẳng d là: .
Lấy điểm O(0; 0) ta có 0 + 0 = 0 > – 1.
Mà điểm O thuộc miền nghiệm của hệ bất phương trình nên ta có bất phương trình x + y ≥ – 1.
Từ đó ta có hệ bất phương trình sau: .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Giá trị nhỏ nhất của biểu thức F = – x + y trên miền nghiệm của hệ bất phương trình −2x+y≤2−x+2y≥4x+y≤5.
Câu hỏi:
Giá trị nhỏ nhất của biểu thức F = – x + y trên miền nghiệm của hệ bất phương trình .
A. 0
Đáp án chính xác
B. 1
C. 2
D. 3
Trả lời:
Đáp án đúng là B
Bài toán đã cho trở thành tìm nghiệm (x; y) của hệ bất phương trình sao cho biểu thức F = – x + y đạt giá trị nhỏ nhất.
Trước hết ta xác định miền nghiệm của hệ bất phương trình đã cho:
Ta có ba đường thẳng: d1: – 2x + y = 2; d2: – x + 2y = 4 và d3: x + y = 5.
+) Lấy O(0; 0) có – 2.0 + 0 = 0 < 2. Do đó miền nghiệm của bất phương trình – 2x + y ≤ 2 là nửa mặt phẳng chứa điểm O(0; 0) có bờ là đường thẳng d1.
+) Lấy O(0; 0) có – 0 + 2.0 = 0 < 4. Do đó miền nghiệm của bất phương trình – x + 2y ≥ 4 là nửa mặt phẳng không chứa điểm O(0; 0) có bờ là đường thẳng d2.
+) Lấy O(0; 0) có 0 + 0 = 0 < 5. Do đó miền nghiệm của bất phương trình x + y ≤ 5 là nửa mặt phẳng chứa điểm O(0; 0) và có bờ là đường thẳng d3.
Miền nghiệm của hệ bất phương trình là miền tam giác ABC với A(0; 2), B(1; 4) và C(2; 3) như trong hình vẽ sau:
Ta đã chứng minh được biểu thức F = – x + y có giá trị nhỏ nhất tại các đỉnh của tam giác ABC.
Tại điểm A, với x = 0, y = 2 thì F = – 0 + 2 = 2.
Tại điểm B, với x = 1, y = 4 thì F = – 1 + 4 = 3.
Tại điểm C, với x = 2, y = 3 thì F = – 2 + 3 = 1.
Vậy giá trị nhỏ nhất của biểu thức F là 1 khi x = 2 và y = 3.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Biểu diễn miền nghiệm của hệ bất phương trình sau:
a) x−2y≤3x+y≥−3;
Câu hỏi:
Biểu diễn miền nghiệm của hệ bất phương trình sau:
a)Trả lời:
a) Ta có hai đường thẳng: d1: x – 2y = 3; d2: x + y = – 3.
+) Lấy O(0; 0) không thuộc vào đường thẳng d1 có 0 – 2.0 = 0 < 3. Do đó miền nghiệm của bất phương trình x – 2y ≤ 3 là nửa mặt phẳng chứa điểm O(0; 0) có bờ là đường thẳng d1.
+) Lấy O(0; 0) không thuộc đường thẳng d2 có 0 + 0 = 0 > – 3. Do đó miền nghiệm của bất phương trình x + y ≥ – 3 là nửa mặt phẳng chứa điểm O(0; 0) có bờ là đường thẳng d2.
Miền nghiệm của hệ bất phương trình là miền không tô màu như trong hình vẽ sau:
====== **** mời các bạn xem câu tiếp bên dưới **** =====