Giải SBT Toán lớp 7 Bài 8: Đại lượng tỉ lệ nghịch
Giải trang 63 Tập 1
Bài 63 trang 63 Tập 1: Hai chiếc máy bay chở khách bay cùng một chặng đường. Tốc độ của máy bay thứ nhất là 965 km/h và nhanh gấp 1,5 lần tốc độ của máy bay thứ hai. Nếu máy bay thứ nhất bay chặng đường trên trong 6 giờ thì máy bay thứ hai bay chặng đường trên trong bao nhiêu giờ?
Lời giải:
Vì tốc độ (tức vận tốc) của máy bay và thời gian bay của máy bay là hai đại lượng tỉ lệ nghịch.
Theo đề bài, tốc độ của máy bay thứ nhất nhanh gấp 1,5 lần tốc độ của máy bay thứ hai.
Do đó thời gian bay của máy bay thứ hai gấp 1,5 lần thời gian bay của máy bay thứ nhất nên: 6 . 1,5 = 9 (giờ).
Vậy nếu máy bay thứ nhất bay chặng đường trên trong 6 giờ thì máy bay thứ hai bay chặng đường trên trong 9 giờ.
Bài 64 trang 63 Tập 1: Cho biết x, y là hai đại lượng tỉ lệ nghịch với nhau. Với mỗi giá trị x1, x2 của x, ta có một giá trị tương ứng y1, y2 của y. Tìm y1, y2; biết x1 = 5; x2 = 2; y1 + y2 = 21.
Lời giải:
Do x, y là hai đại lượng tỉ lệ nghịch nên ta có:
x1y1 = x2y2 hay .
Suy ra .
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
.
Do đó y1 = 2 . 3 = 6; y2 = 5 . 3 = 15.
Vậy y1 = 6; y2 = 15.
Bài 65 trang 63 Tập 1: Cho biết x tỉ lệ nghịch với y theo hệ số tỉ lệ là 2 và y tỉ lệ nghịch với z theo hệ số tỉ lệ là −3. Chứng tỏ rằng z tỉ lệ thuận với x và tìm hệ số tỉ lệ đó.
Lời giải:
Do x tỉ lệ nghịch với y theo hệ số tỉ lệ là 2 và y tỉ lệ nghịch với z theo hệ số tỉ lệ là −3 nên .
Suy ra hay .
Vậy z tỉ lệ thuận với x theo hệ số tỉ lệ là .
Bài 66 trang 63 Tập 1: Nhân dịp tết Trung thu, bác Minh đã chuẩn bị đúng số tiền để mua 45 hộp bánh trung thu cùng loại. Nhưng hôm đó cửa hàng đã giảm giá 10% mỗi hộp. Với số tiền đã chuẩn bị, bác Minh mua được nhiều nhất bao nhiêu hộp bánh trung thu như trên?
Lời giải:
Gọi số hộp bánh trung thu bác Minh dự định mua và mua được nhiều nhất lần lượt là x1 (hộp), x2 (hộp) và giá của mỗi hộp bánh trung thu lúc chưa giảm giá và sau khi giảm giá lần lượt là y1 (đồng), y2 (đồng).
Ta có giá của mỗi hộp bánh sau khi giảm giá là:
.
Do với cùng một số tiền thì số hộp bánh mua được và giá mỗi hộp bánh là hai đại lượng tỉ lệ nghịch nên ta có: .
Suy ra hay x2 = 50.
Vậy với số tiền đã chuẩn bị, bác Minh mua được nhiều nhất 50 hộp bánh trung thu.
Bài 67 trang 63 Tập 1: Một xưởng sản xuất có 42 công nhân hoàn thành một công việc trong 27 ngày. Nhưng khi bắt đầu công việc, xưởng sản xuất đó đã bổ sung một số công nhân để hoàn thành công việc trên trong 21 ngày. Hỏi xưởng sản xuất đó đã bổ sung thêm bao nhiêu công nhân? Giả sử năng suất lao động của mỗi công nhân là như nhau.
Lời giải:
Gọi x (ngày) là số công nhân để hoàn thành công việc trên trong 21 ngày.
Vì số công nhân và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch nên:
21x = 27 . 42 hay x = (27 . 42) : 21 = 54.
Số công nhân xưởng sản xuất đã bổ sung thêm là:
54 – 42 = 12 (công nhân).
Vậy xưởng sản xuất đã bổ sung thêm 12 công nhân.
Bài 68 trang 63 Tập 1: Ba lớp A, B, C được phân công đi lao động với khối lượng công việc như nhau. Lớp 7A, 7B, 7C lần lượt hoàn thành công việc trong 3 giờ, 4 giờ, 5 giờ. Tính số học sinh của mỗi lớp, biết rằng tổng số học sinh của ba lớp là 94 học sinh. Giả sử năng suất lao động của mỗi học sinh là như nhau.
Lời giải:
Gọi x (học sinh), y (học sinh), z (học sinh) lần lượt là số học sinh của lớp 7A, 7B, 7C.
Do với khối lượng công việc như nhau thì số học sinh và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch nên 3x = 4y = 5z.
Suy ra .
Do đó (học sinh);
(học sinh);
(học sinh).
Vậy lớp 7A, 7B, 7C lần lượt có: 40 học sinh; 30 học sinh; 24 học sinh.
Bài 69 trang 63 Tập 1: Anh Lâm mua 12 chiếc bánh nướng, 8 chiếc bánh dẻo, 17 chiếc bánh cốm hết 1 284 000 đồng. Biết giá của 3 chiếc bánh nướng bằng giá của 4 chiếc bánh dẻo và bằng giá 15 chiếc bánh cốm. Tính giá tiền của mỗi chiếc bánh của từng loại bánh trên, biết rằng giá mỗi chiếc bánh trong từng loại trên là như nhau.
Lời giải:
Gọi x (chiếc), y (chiếc), z (chiếc) lần lượt là giá tiền của mỗi chiếc bánh nướng, bánh dẻo và bánh cốm.
Anh Lâm mua 12 chiếc bánh nướng, 8 chiếc bánh dẻo, 17 chiếc bánh cốm hết 1 284 000 đồng nên ta có:
12x + 8y + 17z = 1 284 000.
Mặt khác, giá của 3 chiếc bánh nướng bằng giá của 4 chiếc bánh dẻo và bằng giá 15 chiếc bánh cốm nên: 3x = 4y = 15z
Suy ra .
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
Do đó x = 3 000 . 20 = 60 000 (đồng);
y = 3 000 . 15 = 45 000 (đồng);
z = 3 000 . 4 = 12 000 (đồng).
Vậy giá tiền của mỗi chiếc bánh nướng, bánh dẻo, bánh cốm lần lượt là 60 000 đồng; 45 000 đồng; 12 000 đồng.
Bài 70 trang 63 Tập 1: Ba xe chở khách đi từ tỉnh A về tỉnh B trên cùng một quãng đường. Xe thứ nhất đi hết 4 giờ, xe thứ hai đi hết 3 giờ và xe thứ ba đi hết 2 giờ. Tính vận tốc mỗi xe, biết vận tốc xe thứ ba nhanh hơn xe thứ hai là 20 km/h.
Lời giải:
Gọi x (km/h), y (km/h), z (km/h) lần lượt là vận tốc của xe thứ nhất, xe thứ hai, xe thứ ba.
Vì vận tốc và thời gian đi được của mỗi xe là hai đại lượng tỉ lệ nghịch nên:
4x = 3y = 2z
Suy ra .
Theo đề bài, vận tốc xe thứ ba nhanh hơn xe thứ hai là 20 km/h nên
z – y = 20.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
.
Do đó x = 10 . 3 = 30 (km/h);
y = 10 . 4 = 40 (km/h);
z = 10 . 6 = 60 (km/h).
Vậy vận tốc của xe thứ nhất, xe thứ hai, xe thứ ba lần lượt là 30 km/h; 40 km/h; 60 km/h.
Bài 71* trang 63 Tập 1: Ba máy cày cày được 107,7 ha. Số ngày làm việc của máy thứ nhất, máy thứ hai, máy thứ ba tỉ lệ thuận với ba số 3; 4; 5. Số giờ làm việc mỗi ngày của máy thứ nhất, máy thứ hai, máy thứ ba tỉ lệ thuận với ba số 6; 7; 8. Năng suất làm việc của máy thứ nhất, máy thứ hai, máy thứ ba tỉ lệ nghịch với ba số 5; 4; 3. Hỏi mỗi máy cày cày được bao nhiêu héc-ta?
Lời giải:
Gọi diện tích máy cày thứ nhất, máy cày thứ hai, máy cày thứ ba cày được lần lượt là x (ha), y (ha), z (ha) tương ứng với: số ngày làm việc x1 (ngày), y1 (ngày), z1 (ngày); thời gian làm việc mỗi ngày là x2 (giờ), y2 (giờ), z2 (giờ); năng suất làm việc là x3 (ha/giờ), y3 (ha/giờ), z3 (ha/giờ).
Theo đề bài, ba máy cày cày được 107,7 ha nên x + y + z = 107,7.
Số ngày làm việc của máy thứ nhất, máy thứ hai, máy thứ ba tỉ lệ thuận với ba số 3; 4; 5 nên .
Số giờ làm việc mỗi ngày của máy thứ nhất, máy thứ hai, máy thứ ba tỉ lệ thuận với ba số 6; 7; 8 nên .
Năng suất làm việc của máy thứ nhất, máy thứ hai, máy thứ ba tỉ lệ nghịch với ba số 5; 4; 3 nên .
Ta có: x = x1x2x3; y = y1y2y3, z = z1z2z3.
Suy ra hay .
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
.
Do đó (ha);
y = 4,5 . 7 = 31,5 (ha);
(ha).
Vậy máy cày thứ nhất, máy cày thứ hai, máy cày thứ ba cày được lần lượt là 16,2 ha; 31,5 ha; 60 ha.
Xem thêm các bài giải SBT Toán lớp 7 Cánh diều hay, chi tiết khác:
Bài 7: Đại lượng tỉ lệ thuận
Bài 8 : Đại lượng tỉ lệ nghịch
Bài tập cuối chương 2
Bài 1: Hình hộp chữ nhật. Hình lập phương
Bài 2: Hình lăng trụ đứng tam giác. Hình lăng trụ đứng tứ giác