Bài tập Toán lớp 7 Bài 3: Lũy thừa với số mũ tự nhiên của một số hữu tỉ
A. Bài tập Lũy thừa với số mũ tự nhiên của một số hữu tỉ
A1. Bài tập tự luận
Bài 1. Tính:
a) ;
b) ;
c) ;
d) .
Hướng dẫn giải
a)
b)
c)
d)
Bài 2. Viết các biểu thức sau dưới dạng lũy thừa của một số hữu tỉ.
a) 254 . 28;
b) 272 : 253;
c) 158 . 94;
d) (–27)5 : 323.
Hướng dẫn giải
a) 254 . 28
b) 272 : 253
c) 158 . 94
d) (–27)5 : 323 = .
Bài 3. Tìm x, biết:
a) ;
b) ;
c) ;
d) .
Hướng dẫn giải
a)
.
Vậy .
b)
.
Vậy .
c)
.
Vậy x = 3.
d)
.
Vậy x = 5.
A2. Bài tập trắc nghiệm
Bài 4. Tính
A. 5;
B. 25;
C. 1;
D. .
Hướng dẫn giải
Đáp án đúng là: C
Bài 5. Khoảng cách từ Trái Đất đến Mặt Trời bằng khoảng 1,5 . 108 km. Khoảng cách từ Mộc tinh đến Mặt Trời khoảng 7,78 . 108 km. Hỏi khoảng cách từ Mộc tinh đến Mặt Trời gấp khoảng bao nhiêu lần khoảng cách từ Trái Đất đến Mặt Trời?
A. 5 lần;
B. 5 . 108 lần;
C. 8 lần;
D. 108 lần.
Hướng dẫn giải
Đáp án đúng là: A
Khoảng cách từ Mộc tinh đến Mặt Trời gấp khoảng cách từ Trái Đất đến Mặt Trời số lần là: (7,78 . 108) : (1,5 . 108) = 7,78 : 1,5 ≈ 5 (lần).
Bài 6. Tìm x, biết
A. ;
B. ;
C. ;
D. .
Hướng dẫn giải
Đáp án đúng là: A
. Vậy
B. Lý thuyết Lũy thừa với số mũ tự nhiên của một số hữu tỉ
1. Lũy thừa với số mũ tự nhiên
• Lũy thừa bậc n của một số hữu tỉ x, kí hiệu xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).
(x , n , n >1)
xn đọc là x mũ n hoặc x lũy thừa n hoặc lũy thừa bậc n của x.
x gọi là cơ số, n gọi là số mũ.
Quy ước: x0 = 1 (x ≠ 0); x1 = x.
Ví dụ:
+ 53 đọc là 5 mũ 3 hoặc 5 lũy thừa 3 hoặc lũy thừa bậc 3 của 5.
+ Tính
+ Tính và so sánh: và
và nên
Chú ý:
• Lũy thừa của một tích bằng tích các lũy thừa; lũy thừa của một thương bằng thương các lũy thừa.
; (y ≠ 0).
Ví dụ:
;
253 : 53 = .
2. Nhân và chia hai lũy thừa cùng cơ số
• Khi nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng hai số mũ.
• Khi chia hai lũy thừa cùng cơ số khác 0, ta giữ nguyên cơ số và lấy số mũ của lũy thừa bị chia trừ số mũ của lũy thừa chia.
(x ≠ 0, m ≥ n)
Ví dụ: Tính:
a) ;
b) Tính .
Hướng dẫn giải
a) ;
b) .
3. Lũy thừa của lũy thừa
• Khi tính lũy thừa của một lũy thừa, ta giữ nguyên cơ số và nhân hai số mũ.
Ví dụ: Tính
Ta có: .
Mở rộng
• Lũy thừa với số mũ nguyên âm của một số khác 0.
với n là số nguyên dương, x ≠ 0.
Ví dụ: