Giải SBT Toán lớp 7 Bài 2: Tam giác bằng nhau
Giải trang 45 Tập 2
Bài 1 trang 45 Tập 2: Trong Hình 12, tìm tam giác bằng tam giác ABH.
Lời giải:
Xét DABH và DKBH có:
(cùng bằng 90°),
BH là cạnh chung,
AH = HK (giả thiết).
Do đó ΔABH = ΔKBH (hai cạnh góc vuông).
Vậy ΔABH = ΔKBH.
Bài 2 trang 45 Tập 2: Hai tam giác trong Hình 13a, 13b có bằng nhau không? Vì sao?
Lời giải:
•Hình 13a)
Xét ∆ABC và ∆EDC có:
AC = EC (giả thiết),
(hai góc đối đỉnh),
BC = DC (giả thiết)
Do đó ΔABC = ΔEDC (c.g.c)
Vậy ΔABC = ΔEDC.
•Hình 13b)
Xét DABC và DEDB có:
AB = BC ≠ BE = BD.
Do đó hai tam giác ABC và EBD không bằng nhau
Vậy hai tam giác ABC và EBD không bằng nhau.
Bài 3 trang 45 Tập 2: Nêu thêm điều kiện để hai tam giác trong Hình 14a, 14b bằng nhau theo trường hợp cạnh – góc – cạnh.
Lời giải:
•Hình a)
Để ∆ABD = ∆CBD theo trường hợp cạnh – góc – cạnh thì điều kiện về cặp góc bằng nhau của hai tam giác là góc xen kẽ giữa hai cạnh.
Mà là góc xen kẽ giữa hai cạnh AB và AD, là góc xen kẽ giữa hai cạnh CB và CD.
Lại có AB = CB (giả thiết).
Do đó điều kiện còn lại là điều kiện về cạnh, đó là AD = CD.
Vậy cần thêm điều kiện AD = CD.
•Hình b)
Để ∆KNL = ∆MNL theo trường hợp cạnh – góc – cạnh thì điều kiện về cặp góc bằng nhau của hai tam giác là góc xen kẽ giữa hai cạnh.
Mà là góc xen kẽ giữa hai cạnh NK và NL, là góc xen kẽ giữa hai cạnh NM và NL.
Lại có cạnh NL là cạnh chung của hai tam giác.
Do đó điều kiện còn lại là điều kiện về cạnh, đó là NK = NM.
Vậy cần thêm điều kiện NK = NM.
Bài 4 trang 45 Tập 2: Quan sát Hình 15 rồi thay dấu ? bằng tên tam giác thích hợp.
a) ∆MNI = ∆?;
b) ∆INM = ∆?;
c) ∆? = ∆QIP.
Lời giải:
a) Xét ∆MNI và ∆PQI có:
MN = PQ (giả thiết),
MI = PI (giả thiết),
NI = QI (giả thiết).
Do đó ΔMNI = ΔPQI (c.c.c).
Vậy ΔMNI = ΔPQI.
b) Vì ΔMNI = ΔPQI (theo câu a) nên ΔINM =ΔIQP.
Vậy ΔINM =ΔIQP.
c) Vì ΔMNI = ΔPQI (theo câu a) nên ΔNIM = ΔQIP.
Vậy ΔNIM = ΔQIP.
Giải trang 46 Tập 2
Bài 5 trang 46 Tập 2: Cho ΔABC = ΔDEF và , EF = 7 cm, ED = 15 cm. Tính số đo và độ dài BC, BA.
Lời giải:
Vì ΔABC = ΔDEF (giả thiết) nên ta có:
• (hai góc tương ứng);
•BA = ED, BC = EF (các cặp cạnh tương ứng).
Mà , EF = 7 cm, ED = 15 cm (giả thiết).
Suy ra , BC = 7 cm và BA = 15 cm.
Vậy , BC = 7 cm và BA = 15 cm.
Bài 6 trang 46 Tập 2: Các cặp tam giác trong Hình 16 có bằng nhau không? Nếu có, chúng bằng nhau theo trường hợp nào?
Lời giải:
• Hình a)
Xét ∆ABE và ∆CDF có:
AB = CD (giả thiết),
(giả thiết),
AE = CF (giả thiết).
Do đó ΔABE = ΔCDF (c.g.c).
Vậy hai tam giác ABE và CDF bằng nhau theo trường hợp c.g.c.
• Hình b)
Xét ∆ABE và ∆CDF có:
(giả thiết),
AB = CD (giả thiết),
(giả thiết).
Do đó ΔABE = ΔCDF (g.c.g).
Vậy hai tam giác ABE và CDF bằng nhau theo trường hợp g.c.g.
• Hình c)
Xét ∆ABE và ∆CDF có:
AE = CF (giả thiết),
AB = CD (giả thiết),
BE = DF(giả thiết).
Do đó ΔABE = ΔCDF (c.c.c).
Vậy hai tam giác ABE và CDF bằng nhau theo trường hợp c.c.c.
Bài 7 trang 46 Tập 2: Cho biết ΔABC = ΔDEF và AB = 9 cm, AC = 7 cm, EF = 10 cm. Tính chu vi tam giác ABC.
Lời giải:
Vì ΔABC = ΔDEF (giả thiết)
Nên BC = EF (hai cạnh tương ứng).
Mà EF = 10 cm (giả thiết).
Suy ra BC = 10 cm.
Chu vi tam giác ABC là:
AB + BC + CA = 9 + 10 + 7 = 26 (cm).
Vậy chu vi tam giác ABC là 26 cm.
Bài 8 trang 46 Tập 2: Cho tam giác ABC có AB = AC, lấy điểm M trên cạnh BC sao cho BM = CM. Chứng minh hai tam giác ABM và ACM bằng nhau.
Lời giải:
Xét ∆ABM và ∆ACM có:
AB = AC (giả thiết),
BM = CM (giả thiết),
AM là cạnh chung.
Do đó ΔABM = ΔACM (c.c.c).
Vậy ΔABM = ΔACM.
Bài 9 trang 46 Tập 2: Cho góc xOy. Lấy hai điểm A, B thuộc tia Ox sao cho OA < OB. Lấy hai điểm C, D thuộc tia Oy sao cho OA = OC, OB = OD. Gọi M là giao điểm của AD và CB. Chứng minh rằng:
a) AD = CB;
b) ΔMAB = ΔMCD.
Lời giải:
a) Xét ∆AOD và ∆COB có:
OA = OC (giả thiết),
là góc chung,
OD = OB (giả thiết).
Do đó ΔAOD = ΔCOB (c.g.c).
Suy ra AD = CB (hai cạnh tương ứng).
Vậy AD = CB.
b) Ta có OB = OA + AB (do OA < OB) nên AB = OB – OA.
Tương tự OD = OC + CD nên CD = OD – OC.
Mà OA = OC, OB = OD (giả thiết).
Suy ra AB = CD.
Vì ΔAOD = ΔCOB (chứng minh câu a).
Nên (các cặp góc tương ứng) (1)
Ta có (hai góc kề bù)
Suy ra (2)
Ta có (hai góc kề bù)
Hay (3)
Từ (1),(2),(3) suy ra .
Xét ΔMAB và ΔMCD có
(do ),
AB = CD (chứng minh trên),
(do ).
Do đó ΔMAB = ΔMCD (g.c.g).
Vậy ΔMAB = ΔMCD.
Xem thêm các bài giải SBT Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Bài 1 : Góc và cạnh của một tam giác
Bài 2 : Tam giác bằng nhau
Bài 3 : Tam giác cân
Bài 4 : Đường vuông góc và đường xiên
Bài 5 : Đường trung trực của một đoạn thẳng