Giải SBT Toán lớp 7 Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng
Giải trang 68 Tập 1
Bài 4.41 trang 68 Tập 1: Trong những tam giác dưới đây (H.4.46), tam giác nào là tam giác cân, cân tại đỉnh nào? Vì sao?
Hướng dẫn giải
+ Tam giác ABC có AB = AC (kí hiệu bằng nhau trên hình)
Do đó, tam giác ABC cân tại đỉnh A.
+ Áp dụng định lí tổng 3 góc trong tam giác DEF, ta có:
Suy ra .
Do đó ta có, . Vậy tam giác DEF không phải tam giác cân.
+ Tam giác MNP có .
Do đó, tam giác MNP cân tại đỉnh M.
+ Áp dụng định lí tổng 3 góc trong tam giác KGH, ta có:
Suy ra .
Do đó tam giác KGH có .
Vậy tam giác KGH cân tại đỉnh K.
Bài 4.42 trang 68 Tập 1: Tính số đo các góc còn lại trong các tam giác cân dưới đây (H.4.47).
Hướng dẫn giải
+ Tam giác ABC có AB = AC nên tam giác ABC cân tại đỉnh A.
Suy ra .
Áp dụng định lí tổng ba góc trong tam giác ABC, ta có:
Suy ra .
+ Tam giác MNP có MN = MP nên tam giác MNP cân tại đỉnh M.
Suy ra .
Áp dụng định lí tổng ba góc trong tam giác MNP, ta có:
.
Vậy .
Giải trang 69 Tập 1
Bài 4.43 trang 69 Tập 1: Tam giác ABC có hai đường cao BE và CF bằng nhau (H.4.48). Chứng minh rằng tam giác ABC cân tại đỉnh A.
Hướng dẫn giải
Tam giác ABE vuông tại E, do đó:
.
Tam giác ACF vuông tại F, do đó:
.
Từ đó, suy ra .
Xét tam giác vuông AEB và tam giác vuông AFC có:
BE = CF (theo giả thiết)
(cmt)
Do đó, ∆AEB = ∆AFC (cạnh góc vuông và góc nhọn kề nó).
Suy ra AB = AC (hai cạnh tương ứng).
Vậy tam giác ABC cân tại đỉnh A.
Bài 4.44 trang 69 Tập 1: Cho tam giác ABC vuông tại đỉnh A. Gọi M là trung điểm của BC và D là điểm nằm trên tia đối của tia MA sao cho MD = MA (H.4.49). Chứng minh rằng:
a) ∆ABD vuông tại B.
b) ∆ABD = ∆BAC.
c) Các tam giác AMB, AMC là các tam giác cân tại đỉnh M.
Hướng dẫn giải
a) Xét tam giác AMC và tam giác DMB có:
MA = MD (gt)
MB = MC (M là trung điểm của BC)
(hai góc đối đỉnh)
Do đó, ∆AMC = ∆DMB (c – g – c).
Suy ra (hai góc tương ứng).
Do tam giác ABC vuông tại A nên .
Khi đó, ta có: = .
Suy ra .
Vậy tam giác ABD vuông tại B.
b) Xét tam giác vuông ABD và tam giác vuông BAC có:
BD = AC (do ∆AMC = ∆DMB)
AB: cạnh chung
Do đó, ∆ABD = ∆BAC (hai cạnh góc vuông).
c) Do tam giác ABC vuông tại A nên AC ⊥ AB tại A.
Tam giác ABD vuông tại B nên DB ⊥ AB tại B.
Suy ra AC // DB (do cùng vuông góc với AB).
(hai góc so le trong).
Lại có: (do ∆ABD = ∆BAC).
Do đó, , hay .
Suy ra tam giác AMC cân tại đỉnh M.
Khi đó MA = MC.
Mà MB = MC (do M là trung điểm của BC).
Nên MA = MB = MC.
Do đó, tam giác AMB cân tại đỉnh M.
Bài 4.45 trang 69 Tập 1: Cho tam giác ABC là tam giác cân đỉnh A. Chứng minh rằng:
a) Hai đường trung tuyến BM, CN bằng nhau (H.4.50a).
b) Hai đường phân giác BE, CF bằng nhau (H.4.50b).
Hướng dẫn giải
a) Do BM và CN là đường trung tuyến của tam giác ABC nên M và N lần lượt là trung điểm của AC và AB.
Khi đó, .
Mà AB = AC (do tam giác ABC cân tại đỉnh A).
Do đó, AM = MC = AN = NB.
Xét tam giác ABM và tam giác ACN có:
AB = AC
: góc chung
AM = AN
Do đó, ∆ABM = ∆ACN (c – g – c).
Suy ra BM = CN (đpcm).
b) Do BE là đường phân giác của góc ABC nên .
Và CF là đường phân giác của góc ACB nên .
Lại có (do tam giác ABC cân tại đỉnh A).
Do đó, .
Xét tam giác ABE và tam giác ACF có:
: góc chung
AB = AC
Do đó, ∆ABE = ∆ACF (g – c – g)
Suy ra, BE = CF (đpcm).
Bài 4.46 trang 69 Tập 1: Cho các điểm A, B, C, D, E như Hình 4.51. Chứng minh rằng:
a) ∆AEB và ∆DEC là các tam giác cân đỉnh E.
b) AB // CD.
Hướng dẫn giải
a) Xét tam giác vuông ADB và tam giác vuông BCA có:
AB: cạnh huyền chung
AD = CB (gt)
Do đó, ∆ADB = ∆BCA (cạnh huyền – cạnh góc vuông).
Suy ra .
Khi đó tam giác EAB cân tại đỉnh E.
Xét tam giác vuông ADE và tam giác vuông BCE có:
AD = CB (gt)
EA = EB (∆EAB cân tại đỉnh E)
Do đó, ∆ADE = ∆BCE (cạnh huyền – cạnh góc vuông).
Suy ra ED = EC.
Do đó, tam giác EDC cân tại đỉnh E.
b) Theo định lí tổng 3 góc trong tam giác EAB, ta có:
Mà (chứng minh trên)
Suy ra . (1)
Theo định lí tổng 3 góc trong tam giác EDC, ta có:
Mà (∆ECD cân tại đỉnh E).
Suy ra . (2)
Ta lại có: (hai góc đối đỉnh). (3)
Từ (1), (2) và (3) suy ra , hay .
Mà hai góc này ở vị trí so le trong.
Vậy AB // DC.
Giải trang 70 Tập 1
Bài 4.47 trang 70 Tập 1: Cho tam giác ABH vuông tại đỉnh H có . Trên tia đối của tia HB lấy điểm C sao cho HB = HC (H.4.52). Chứng minh rằng ∆ABC là tam giác đều và BH = .
Hướng dẫn giải
+ Xét tam giác vuông ABH và tam giác vuông ACH có:
AH: cạnh chung
HB = HC (gt)
Do đó, ∆ABH = ∆ACH (hai cạnh góc vuông).
Suy ra AB = AC. (1)
Do đó, tam giác ABC cân tại đỉnh A.
⇒ .
Ta có: (định lí tổng ba góc trong tam giác).
Suy ra .
Khi đó , do đó tam giác ABC cân tại đỉnh C nên AC = BC. (2)
Từ (1) và (2) suy ra AB = AC = BC.
Do đó, ∆ABC đều.
+ Vì H thuộc BC và điểm H nằm giữa điểm B và điểm C, hơn nữa HB = HC, do đó H là trung điểm của BC.
Suy ra .
Mà BC = AB (chứng minh trên).
Vậy BH = .
Bài 4.48 trang 70 Tập 1: Đường thẳng d trong hình nào dưới đây là trung trực của đoạn thẳng AB?
Hướng dẫn giải
Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là đường trung trực của đoạn thẳng đó.
Do đó, trong các Hình 4.53, chỉ có đường thẳng d trong Hình 4.53a là đường trung trực của đoạn thẳng.
Bài 4.49 trang 70 Tập 1: Cho A là một điểm tùy ý nằm trên đường trung trực của đoạn thẳng BC sao cho A không thuộc BC. Khẳng định nào dưới đây là đúng?
a) AB = AC.
b) Tam giác ABC đều.
c) .
d) Tam giác ABC cân tại đỉnh A.
Hướng dẫn giải
Điểm A thuộc đường trung trực của BC nên AB = AC (điểm thuộc đường trung trực của một đoạn thẳng thì cách đều hai đầu mút của đoạn thẳng đó).
Do đó, ∆ABC cân tại đỉnh A.
Suy ra .
Vậy các câu a), c), d) đúng.
Câu b) chưa đúng vì ta chưa đủ dữ kiện để tam giác ABC đều, do ta chỉ có AB = AC, và độ dài đoạn thẳng BC bất kì.
Bài 4.50 trang 70 Tập 1: Cho tam giác ABC cân tại đỉnh A có đường cao AH. Cho M là một điểm tùy ý trên đường thẳng AH sao cho M không trùng với A (H.4.54). Chứng minh rằng: .
Hướng dẫn giải
Xét tam giác vuông ABH và tam giác vuông ACH có:
AB = AC (∆ABC cân tại đỉnh A)
AH: cạnh chung
Do đó, ∆ABH = ∆ACH (cạnh huyền – cạnh góc vuông).
Suy ra , hay .
Xét tam giác ABM và ACM có:
AB = AC (∆ABC cân tại đỉnh A)
AM: cạnh chung
Do đó, ∆ABM = ∆ACM (c – g – c).
Suy ra .
Xem thêm các bài giải SBT Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Bài 15: Các trường hợp bằng nhau của tam giác vuông
Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng
Ôn tập chương 4
Bài 17: Thu thập và phân loại dữ liệu
Bài 18: Biểu đồ hình quạt tròn